梁和月,陽朝霞,傅彩霞,曾蒙蘇,饒圣祥
復旦大學附屬中山醫院放射科,上海 200032
全肝MRI直方圖分析檢測結直腸癌肝轉移復發的價值
梁和月,陽朝霞,傅彩霞,曾蒙蘇,饒圣祥
復旦大學附屬中山醫院放射科,上海 200032
目的:探討治療前MRI直方圖分析在預測結直腸癌肝轉移復發中的價值。方法:選取初次診斷為結直腸癌同步肝轉移的50例患者,均接受包括擴散加權成像(diffusion weighted imaging,DWI)(b=0、500 s/mm2)在內的常規腹部增強MRI掃描。對表觀擴散系數(apparent diffusion coefficient,ADC)和門脈期強化率圖像進行直方圖分析,獲得包括均值、標準差、中位數、偏斜度、峰度及百分位數(1st、10th、50th、90th、99th百分位數)在內的參數。對所得直方圖參數進行統計分析,比較肝轉移復發(n=20)與無復發(n=30)組患者(隨訪間隔在6個月內)治療前MRI直方圖的差異。結果:結直腸癌肝轉移患者門靜脈期強化率直方圖分析顯示,復發組標準差和99th百分位數高于無復發組,差異有統計學意義(P=0.025,0.024),曲線下面積均為0.68。而ADC直方圖分析顯示,均值、標準差、中位數、偏斜度、峰度和百分位數在復發組與無復發組之間均無統計學差異(P>0.05)。結論:MRI門靜脈期強化率直方圖分析對預測結直腸癌肝轉移患者的短期療效具有潛在價值。
直方圖分析;強化率;結直腸癌;肝轉移;復發
肝臟是結直腸癌最常見的轉移部位,結直腸癌的遠處轉移中約60%發生于肝臟[1]。結直腸癌肝轉移的預后主要取決于肝轉移灶的治療。目前,隨著影像學技術的發展,術前影像學檢查包括CT、MRI及PET/CT等的應用在提高病灶的檢出率、幫助制訂正確的治療方案及隨訪中發揮著不可或缺的作用,但對結直腸癌患者的總體生存沒有太多改善。結直腸癌肝轉移患者預后較差,約65%的患者在肝轉移灶切除術后發生肝臟復發[2],結直腸癌1年累計異時性肝轉移的發生率約4.3%,而5年累計異時性肝轉移的發生率約14.5%[3]。
有研究認為,惡性實體腫瘤患者正常的肝實質區可能存在微小的肝轉移灶[4-5],但目前的影像學檢查方法無法檢測到,從而導致術后較高的復發率及異時性肝轉移,引起不良預后[6]。對超聲、CT及MRI的灌注研究顯示,肝轉移灶能改變肝臟的血供特征,導致門靜脈血流下降,而動脈血流代償增加[7-9]。MRI是評估腫瘤的重要診斷工具,其具有優良的軟組織對比度和多平面重建能力[10-11]。擴散加權成像(diffusion weighted imaging,DWI)是一種功能MRI技術,能探測活體組織的水分子運動,從而提供微觀水平信息[12]。表觀擴散系數(apparent diffusion coefficient,ADC)用于描述DWI中不同方向分子擴散運動的速度和范圍,反映的是體素的平均值,而腫瘤的異質性廣泛存在[13],因此ADC不能提供腫瘤的異質性信息。
醫學影像學紋理分析能獲得更多肉眼無法觀察的信息[14]。直方圖分析是紋理分析中的一部分,能量化腫瘤內部的異質性。MRI直方圖研究在腫瘤診斷及預后評價中有更多優勢[15-18]。基于上述理論,筆者認為在結直腸癌肝轉移患者中,正常的肝實質可能存在微小轉移灶,這種肉眼無法看到的病灶導致了治療后較高的復發率。本研究旨在通過觀察結直腸癌肝轉移患者治療前ADC圖和門靜脈強化率圖的直方圖,分析其在預測肝臟復發中的作用。
1.1 患者資料
收集2009年12月—2014年11月期間復旦大學附屬中山醫院收治的初次診斷為結直腸癌同步肝轉移的患者共50例,均接受腹部增強MRI檢查(包括DWI,b值為0、500 s/mm2)。其中男性32例、女性18例;平均年齡(56.6±13.4)歲。
患者入選標準為:① 檢查前未接受任何結直腸癌腫瘤相關治療,包括手術、化療及放療等;② 無結直腸癌以外的其他腫瘤相關病史;③ 既往無肝臟病變治療病史;④ 患者隨訪時間不短于6個月。
1.2 檢查方法
采用1.5 T超導MRI機(SIEMENS公司Magneto Avanto),聯用體部相控陣線圈與脊柱線圈。DWI檢查采用自旋回波-平面回波(spin echo-echo planar imaging,SE-EPI)序列,b值選擇0、500 s/mm2。掃描參數如下:重復時間(repetition time,TR)= 2 400~2 600 ms,回波時間(echo time,TE)=66 ms,層厚7.0 mm,層間距2.1 mm,矩陣112×128,視野(field of view,FOV) 33 cm×33 cm~38 cm×38 cm。為減少化學位移偽影,采用常規抑脂技術和全局自動校準部分并行采集(GRAPPA)技術,加速因子R=2,掃描一次屏氣完成,包括全部肝臟掃描,同時完成b=0和高b值的圖像重組,各向同性,自動生成ADC圖。在DWI檢查前行常規呼吸導航快速自旋回波T2WI (TR=3 300 ms,TE= 70 ms,反轉角150o,矩陣207×384),如果呼吸無規律,則采用多次屏氣快速自旋回波T2WI (TR=3 500 ms,TE=84 ms,反轉角140o,矩陣194×256)和2次屏氣的二維快速小角度激發梯度回波T1WI (2D-fast low angle shot-T1,2DFLASH-T1;TR= 112.00 ms,TE=4.76 ms,反轉角70o,矩陣144×256),均為層厚7.0 mm,層間距2.1 mm,FOV 33 cm×33 cm~38 cm× 38 cm。完成DWI檢查后,應用一次性屏氣抑脂2D-FLASH-T1 (TR=230.00 ms,TE=2.47 ms,反轉角70o,層厚7.0 mm,層間距2.1 mm,矩陣135×256)或一次屏氣三維容積間插重建梯度回波抑脂(3D-fat suppressed-volume interpolated body examination-T1,3D-VIBE-T1-FS;TR=5.04 ms,TE=2.31 ms,反轉角10o,層厚4 mm,無間距掃描,矩陣250×512)行常規動態增強成像,FOV均為33 cm×33 cm~38 cm×38 cm。增強前掃描1個回合,增強后行3個回合掃描,造影劑選擇釓噴酸葡胺(gadolinium-diethylenetriamine pentaacetic acid,Gd-DTPA),總量15~20 mL,經肘靜脈注射后分別于20~30 s、70~80 s、180 s行屏氣多回合增強掃描。
1.3 圖像分析
利用SIEMENS公司OncoTreat進行直方圖分析。將圖像從醫院的影像歸檔和通信系統(Picture Archiving and Communication Systems,PACS)以DICOM格式轉移到SIEMENS直方圖軟件工作站中,對所有患者的ADC圖、門靜脈期強化率圖像進行測量,由一名具有2年腹部影像學診斷經驗的放射科醫師完成測量。感興趣區(region of interest,ROI)包括整個正常肝實質,測量者對肝臟的每一層進行ROI勾畫,勾畫過程中盡可能包括全部正常肝實質,去除任何可見的肝臟病灶,包括轉移灶、囊腫、血管瘤等,盡量避開大血管包括門靜脈、肝靜脈主干、下腔靜脈。ADC圖的勾畫參照DWI圖像(圖1),門靜脈期強化率圖像在SIEMENS軟件中進行完成(圖2)。隨后,對這些參數進行分析:均值(mean)、標準差(standard deviation,SD)、中位數(median)、偏斜度(skewness)、峰度(kurtosis)及百分位數(1st、10th、50th、90th、99th 百分位數)。
1.4 統計學處理
2.1 一般特征

圖1 DWI、ADC及ADC圖直方圖

圖2 門靜脈期強化率圖像
根據臨床資料,將同步轉移患者根據腫瘤治療療效(短期隨訪,約6個月)分成治療后復發組(n=20)和無復發組(n=30)。患者均接受氟尿嘧啶為基礎的化療,包括FOLFOX(奧沙利鉑+亞葉酸鈣+氟尿嘧啶)、XELOX (卡培他濱+奧沙利鉑)。其中47例患者接受了肝臟病灶切除(病理均證實為結直腸癌肝轉移),3例未進行肝臟病灶切除。兩組患者年齡、性別、原發部位無統計學差異(表1)。
2.2 直方圖分析及AUC
同步肝轉移患者治療前的ADC和門靜脈強化率直方圖測量數據見表2、3。ADC直方圖分析參數在復發與無復發組之間差異無統計學意義(P>0.05);門靜脈期強化率直方圖分析顯示,復發組SD (P=0.025)和99th百分位數(P=0.024)高于無復發組(圖3、4),差異有統計學意義,相對應的AUC均為0.68。
本研究顯示,同步肝轉移患者中,治療后短期復發與無復發患者的ADC直方圖參數無統計學差異,而門靜脈期強化率直方圖參數中復發組SD和99th百分位數高于無復發組,AUC值均為0.68。
研究認為,結直腸癌肝轉移患者中可能存在隱匿病灶,導致了治療后復發甚至異時性肝轉移[4-5,19],并能誘導肝實質血流變化[7-9]。與正常人群或動物對照組相比,肝實質動脈期血流量、多普勒灌注指數增高,而門靜脈期相對降低[7,20]。肝轉移灶導致動脈血供增加,使門靜脈血流下降。但也有動物實驗及臨床研究得出不一樣的結論[9,21-23],認為肝實質血流灌注參數在有肝轉移與無肝轉移患者之間沒有差別。肝實質血流灌注受很多生理學因素的影響,包括血流量、血容量、毛細血管通透性和血管外間隙等,因此研究單一參數不能完全反映其血流灌注特征。

表1 患者一般特征

表2 復發與無復發組之間ADC直方圖分析的比較

表3 復發與無復發組之間門靜脈期強化率直方圖分析的比較

圖3 結腸癌肝轉移治療后復發患者直方圖分析

圖4 結腸癌肝轉移治療后無復發患者直方圖分析
本研究中,結直腸癌肝轉移患者治療前門靜脈期強化率直方圖分析顯示復發組的99th百分位數高于無復發組。以往研究認為,結直腸癌肝轉移患者門靜脈血流中存在腫瘤細胞,其阻塞于毛細血管床,形成毛細血管網的微小栓塞,導致門靜脈壓升高,并使肝臟血供的平均渡越時間延長[9,24-25]。本研究分析了門靜脈期強化率圖像,反映的是正常肝實質的強化率,而非單純的信號值。肝實質MRI強化程度與細胞外間隙的藥物濃度有關。本研究推測肝轉移患者肝實質內由于腫瘤細胞微小栓塞形成導致門靜脈壓增高、血流減慢,使增強檢查時藥物在細胞外間隙和血管內滯留,從而導致藥物濃度發生改變,強化程度增加。復發組患者肝實質內門靜脈微栓塞程度較無復發組嚴重,造成造影劑滯留增加。由于血流減慢,血液滯留,導致原發腫瘤脫落的腫瘤細胞進入門靜脈血流中局部停留種植的概率增加。99th百分位數是一個量度,表示在該值以下99%信號強化程度的觀測數據均包含其中。其剔除了直方圖中1%的最大值,而這些最大值可能代表了ROI勾畫過程中無法去除的部分血管分支,去除了這部分1%的最大值,能更準確地反映肝實質本身真實的強化特征。
本研究中復發組SD高于無復發組。SD反映了直方圖中數值的分布特征,代表圖像中數值的離散程度,各數值與均值的差異程度,差異越大,變異度越高。治療后復發組患者的門靜脈期強化率直方圖SD更高,表示復發患者MRI圖像中信號強化程度有較高的變異性,離散程度大,各強化率數值較平均強化率差異大,反映其肝臟血流灌注的異質性高。
在異質性腫瘤中,腫瘤細胞密集區域ADC值更低[26-27],腫瘤組織較正常肝實質具有相似或相對較低的ADC值[28]。理論上,同步肝轉移患者中治療后復發患者的正常肝實質存在更多微病灶,這些病灶對肝實質的ADC值產生影響。而本研究ADC直方圖分析中,各參數在治療后復發與無復發肝轉移患者之間無差別,這可能是由于結直腸癌肝轉移患者肝實質中的ADC值不僅受細胞結構的影響,還受血流灌注的影響。
本研究也有一些不足之處。首先,是一個回顧性研究,存在選擇偏倚。其次,DWI只采用了兩個b值(0和500 s/mm2),在以后的療效評估中采用多b值可能有更多的利益。第三,少部分肝轉移患者沒有明確的肝轉移灶病理結果,但對本研究影響甚微。此外,由于圖像采集技術及患者條件的限制,未進行肝動脈期的研究,沒有評價動脈期血流變化,希望以后能對此進行深入研究。
結直腸癌肝轉移患者肝實質的門靜脈期強化率直方圖分析能幫助預測化療后復發,具有一定的臨床應用價值。
[1] PESTANA C, REITEMEIER RJ, MOERTEL C G, et al. The natural history of carcinoma of the colon and rectum [J]. Am J Surg, 1964, 108: 826-829.
[2] BROUQUET A, MORTENSON M M, VAUTHEY J N, et al. Surgical strategies for synchronous colorectal liver metastases in 156 consecutive patients: classic, combined or reverse strategy? [J]. J Am Coll Surg, 2010, 210(6):934-941.
[3] MANFREDI S, LEPAGE C, HATEM C, et al. Epidemiology and management of liver metastases from colorectal cancer [J]. Ann Surg, 2006, 244(2): 254-259.
[4] LAMBREGTS D M, MARTENS M H, QUAH R C, et al. Whole-liver diffusion-weighted MRI histogram analysis: effect of the presence of colorectal hepatic metastases on the remaining liver parenchyma [J]. Eur J Gastroenterol Hepatol, 2015, 27(4): 399-404.
[5] CONZELMANN M, LINNEMANN U, BERGER M R. Detection of disseminated tumor cells in the liver of cancer patients [J]. Eur J Surg Oncol, 2005, 31(9): 977-985.
[6] VIGANO L, CAPUSSOTTI L, DE ROSA G, et al. Liver resection for colorectal metastases after chemotherapy:impact of chemotherapy-related liver injuries, pathological tumor response, and micrometastases on long-term survival [J]. Ann Surg, 2013, 258(5): 731-740.
[7] KOPLJAR M, BRKLJACIC B, DOKO M, et al. Nature of Doppler perfusion index changes in patients with colorectal cancer liver metastases [J]. J Ultrasound Med, 2004, 23(10): 1295-1300.
[8] TOTMAN J J, O’GORMAN R L, KANE P A, et al. Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer [J]. Br J Radiol, 2005, 78(926): 105-109.
[9] CUENOD C, LECONTE I, SIAUVE N, et al. Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT [J]. Radiology, 2001, 218(2): 556-561.
[10] SUGAHARA T, KOROGI Y, GE Y, et al. Contrast enhancement of intracranial lesions: conventional T1-weighted spin-echo versus fast spin-echo MR imaging techniques [J]. AJNR Am J Neuroradiol, 1999, 20(8):1554-1559.
[11] GAETA M, VINCI S, MINUTOLI F, et al. CT and MRI findings of mucin-containing tumors and pseudotumors of the thorax: pictorial review [J]. Eur Radiol, 2002, 12(1): 181-189.
[12] LE BIHAN D J. Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the “holy grail” of tissue characterization? [J]. Radiology, 1998, 207(2): 305-307.
[13] WELCH D R. Tumor heterogeneity-a ‘contemporary concept’ founded on historical insights and predictions [J]. Cancer Res, 2016, 76(1): 4-6.
[14] CASTELLANO G, BONILHA L, LI L M, et al. Texture analysis of medical images [J]. Clin Radiol, 2004, 59(12):1061-1069.
[15] EMBLEM K E, NEDREGAARD B, NOME T, et al. Glioma grading by using histogram analysis of bloodvolume heterogeneity from MR-derived cerebral blood volume maps [J]. Radiology, 2008, 247(3): 808-817.
[16] CHOI Y S, KIM D W, LEE S K, et al. The added prognostic value of preoperative dynamic contrastenhanced MRI histogram analysis in patients with glioblastoma: analysis of overall and progression-free survival [J]. AJNR Am J Neuroradiol, 2015, 36(12):2235-2241.
[17] POPE W B, KIM H J, HUO J, et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment [J]. Radiology, 2009, 252(1): 182-189.
[18] Nishiguchi T, Iwakiri T, Hayasaki K, et al. Postembolisation susceptibility changes in giant meningiomas:multiparametric histogram analysis using non-contrastenhanced susceptibility-weighted PRESTO, diffusionweighted and perfusion-weighted imaging [J]. Eur Radiol, 2013, 23(2): 551-561.
[19] LEEN E. The detection of occult liver metastases of colorectal carcinoma [J]. J Hepatobiliary Pancreat Surg, 1999, 6(1): 7-15.
[20] LEEN E, GOLDBERG J A, ANGERSON W J, et al. Potential role of Doppler perfusion index in selection of patients with colorectal cancer for adjuvant chemotherapy [J]. Lancet, 2000, 355(9197): 34-37.
[21] HOHMANN J, MULLER C, OLDENBURG A, et al. Hepatic transit time analysis using contrast-enhanced ultrasound with BR1: A prospective study comparing patients with liver metastases from colorectal cancer with healthy volunteers [J]. Ultrasound Med Biol, 2009, 35(9):1427-1435.
[22] HOHMANN J, NEWERLA C, MULLER A, et al. Hepatic transit time analysis using contrast enhanced MRI with Gd-BOPTA: A prospective study comparing patients with liver metastases from colorectal cancer and healthy volunteers [J]. J Magn Reson Imaging, 2012, 36(6): 1389-1394.
[23] ROUMEN R M, SCHELTINGA M R, SLOOTER G D, et al. Doppler perfusion index fails to predict the presence of occult hepatic colorectal metastases [J]. Eur J Surg Oncol, 2005, 31(5): 521-527.
[24] MORRIS V L, MACDONALD I C, KOOP S, et al. Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis [J]. Clin Exp Metastasis, 1993, 11(5): 377-390.
[25] JHAUGEBERG G, STROHMEYER T, LIERSE W, et al. The vascularization of liver metastases. Histological investigation of gelatine-injected liver specimens with special regard to the vascularization of micrometastases [J]. J Cancer Res Clin Oncol, 1988, 114(4): 415-419.
[26] LYNG H, HARALDSETH O, ROFSTAD E K. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging [J]. Magn Reson Med, 2000, 43(6): 828-836.
[27] DENG J, RHEE T K, SATO K T, et al. In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla [J]. Invest Radiol, 2006, 41(4): 410-414.
[28] BRUEGEL M, HOLZAPFEL K, GAA J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusionweighted single-shot echo-planar MR imaging technique [J]. Eur Radiol, 2008, 18(3): 477-485.
Potential of whole-liver MRI histogram analysis of remaining liver parenchyma to predict recurrence of colorectal liver metastases
LIANG Heyue, YANG Zhaoxia, FU Caixia, ZENG Mengsu, RAO Shengxiang
(Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China)
RAO Shengxiang E-mail: raoxray@163.com
Objective: To explore whether magnetic resonance imaging (MRI) histogram analysis of apparently diseasefree liver parenchyma can help predict the recurrence of colorectal liver metastases. Methods: Standard enhanced MRI including diffusion weighted imaging (b=0, 500 s/mm2) were performed at the first stage of diagnosis in 50 patients with colorectal liver metastases. Histograms were performed for apparent diffusion coefficient (ADC) maps and enhanced rate image of portal venous phase (PVP), thereafter the mean, standard deviation, median, skewness, kurtosis and Nth percentiles (1st, 10th, 50th, 90th , 99th) were generated. Quantitative histogram parameters were compared between the patients with recurrence (n=20) and without recurrence (n=30) after a short period (about 6 months) of chemotherapy with or without surgery. Receiver operating characteristic (ROC) analyses was further analyzed for the significant parameters. Results: The mean, standard deviation, median, skewness, kurtosis and percentiles of ADC maps had no significant difference between the patients with and without hepatic recurrence (P>0.05) after a short period of chemotherapy. The standard deviation and 99th percentile of enhanced rate image of portal venous phase were significantly higher in the patients with recurrence compared with those without recurrence (P=0.025, 0.024), and the areas under curve (AUCs) were both 0.68. Conclusion: Whole-liver MRI histogram analysis of apparently disease-free liver parenchyma can help predict hepatic recurrence in the patients with colorectal liver metastases.
Histogram analysis; Enhanced rate; Colorectal cancer; Liver metastasis; Recurrence
R445.2
A
1008-617X(2017)01-0018-07
2017-02-01)
饒圣祥 E-mail:raoxray@163.com