999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化

2017-04-26 02:38:46沈留紅巫曉峰肖勁邦姜思汛鄧俊良左之才傅宏慶曹隨忠余樹民張有瑞
浙江農業學報 2017年4期
關鍵詞:血清

沈留紅,巫曉峰,肖勁邦,姜思汛,鄧俊良,左之才,傅宏慶,曹隨忠,余樹民,*,張有瑞

(1.四川農業大學 動物醫學院 動物疫病與人類健康四川省重點實驗室,奶牛疾病研究中心, 四川 成都 611130; 2.江蘇農牧科技職業學院,江蘇 泰州 225300; 3.河北省廊坊市農業局水產站,河北 廊坊 065000)

回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化

沈留紅1,巫曉峰1,肖勁邦1,姜思汛1,鄧俊良1,左之才1,傅宏慶2,曹隨忠1,余樹民1,*,張有瑞3

(1.四川農業大學 動物醫學院 動物疫病與人類健康四川省重點實驗室,奶牛疾病研究中心, 四川 成都 611130; 2.江蘇農牧科技職業學院,江蘇 泰州 225300; 3.河北省廊坊市農業局水產站,河北 廊坊 065000)

為探究回乳期奶牛血清中生長激素(GH)、胰島素(INS)、氫化可的松(HC)、轉化生長因子β1(TGF-β1)和胰島素樣生長因子1(IGF-1)含量的變化及其相關性。試驗選擇規?;膛鋈债a奶量為(15.43 ± 2.10) kg,即將干乳的妊娠后期健康中國荷斯坦奶牛20頭。干乳開始當天記為第0天,分別采集第0、1、3、5、7、9和11天奶牛尾靜脈血,ELISA法檢測血清中GH、INS、HC、TGF-β1和IGF-1含量并對結果進行統計學處理,分析其在奶?;厝檫^程中的變化規律及其相關性。結果顯示,回乳期奶牛血清GH、INS、HC和TGF-β1含量在第0至1天變化不顯著(P>0.05);血清GH和HC含量第3至11天依次降低且差異均極顯著(P<0.01),其中血清HC含量第3天極顯著高于其余各天(P<0.01);血清INS含量第3至11天依次升高且差異均極顯著(P<0.01);血清TGF-β1含量第3至11天差異性均不顯著(P>0.05);血清IGF-1含量依次呈階梯式下降趨勢,第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之間均差異不顯著(P>0.05),但第0至1天、第3至5天、第7至11天3階段之間差異極顯著(P<0.01)。回乳期奶牛血清GH、INS、TGF-β1和IGF-1含量變化兩兩間呈極顯著相關(P<0.01);HC含量變化與GH、INS和IGF-1含量變化均呈極顯著相關(P<0.01),與TGF-β1含量變化呈顯著負相關(P<0.05)。

回乳期奶牛;生長激素;胰島素;氫化可的松;轉化生長因子β1;胰島素樣生長因子1

激素在哺乳動物生長發育過程中具有不可替代的調控作用,其中直接調控乳腺發育和泌乳的激素主要有生長激素(growth hormone,GH)、胰島素(insulin,INS)、氫化可的松(hydrocortisone,HC)、催乳素(prolactin, PRL)、雌激素(estrogen, E)和孕酮(progesterone,P4)等[1-2],它們通過與轉化生長因子β1(transforming growth factor β1,TGF-β1)、胰島素樣生長因子1(insulin-like growth factor 1,IGF-1)、信號轉導和轉錄激活因子5(signal transduction and transcriptional activation factor of 5,STAT5)等[3]細胞因子相互作用而形成乳腺發育和泌乳的調控網絡。泌乳相關激素對人、小鼠、奶牛等動物泌乳期的影響已有研究,并顯示均與泌乳量呈一定的相關性[4-6]。由于奶牛經過泌乳期,消耗大量能量和營養物質,在妊娠后期,為保證胎犢宮內生長發育及分娩后再次泌乳做充分準備,奶牛需要經過一段時間的回乳期后進入干乳期,使乳房更新乳腺組織,另外,不適當的回乳方法會增加干乳期及分娩后奶牛乳房炎的發生率,而目前關于回乳期奶牛泌乳相關激素和因子的變化規律及其相關性研究尚未見報道。因此,本試驗旨在探究回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化規律及其相關性,以進一步研究回乳期奶牛相關泌乳激素的調控機理,以及為尋求更安全有效的回乳技術提供理論依據。

1 材料與方法

1.1 材料

1.1.1 試驗動物

試驗選擇四川省某規?;膛霭敕忾]統一舍飼,體質量(582±41)kg、2~4胎中國荷斯坦奶牛51頭。從中選擇體況良好,臨床檢查健康,乳房、乳汁均正常,即將進入回乳期,產奶量為(15.43±2.10)kg的妊娠后期奶牛20頭。

1.1.2 試驗試劑

牛GH、INS、HC、TGF-β1和IGF-1雙抗體夾心酶聯免疫吸附檢測(ELISA)試劑盒,均由美國RD公司提供。

1.2 試驗方法

1.2.1 回乳方式

采用逐漸干奶法[7-8],方法:停喂多汁飼料,減少精料喂量,以青干草為主,控制飲水,適當加強運動。在回乳第1天,擠奶次數由3次改為2次,第2天改為1次,逐漸減少擠奶次數,當奶牛日產奶量為3~4 kg時,停止擠奶。

1.2.2 血清收集

奶?;厝殚_始當天記為第0天,依次采集第0、1、3、5、7、9和11天尾靜脈血10 mL,置于未加抗凝劑的離心管中,室溫下靜置1 h,離心力352g離心10 min,轉移上層血清于EP管中,-20 ℃凍存,待檢。

1.2.3 ELISA檢測

采用雙抗體夾心酶聯免疫吸附技術(ELISA)測定牛GH、INS、HC、TGF-β1和IGF-1含量,步驟嚴格按照說明書進行。

1.3 統計分析

采用SPSS 19.0軟件進行統計學分析,K-S檢驗計量資料是否服從正態分布,以平均數±標準差(Mean ± SD)表示,兩組間采用獨立樣本t檢驗,多組間比較采用單因素方差分析,相關性分析采用雙變量Pearson相關分析,P<0.05為差異有統計學意義。

2 結果與分析

2.1 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量

由表1可知,回乳期血清GH、INS、HC、TGF-β1和IGF-1含量在第0至1天變化均不顯著(P>0.05);血清GH和HC含量第3至11天依次降低且差異均極顯著(P<0.01),其中血清HC含量第3天極顯著高于其余各天(P<0.01);血清INS含量第3至11天依次升高且差異均極顯著(P<0.01);血清TGF-β1含量第3至11天差異性均不顯著(P>0.05);血清IGF-1含量依次呈階梯式下降趨勢,但第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之間差異均不顯著(P>0.05),而第0至1天、第3至5天、第7至11天3個階段之間差異極顯著(P<0.01)。

2.2 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1的相關性

由表2可知,回乳期奶牛血清GH、INS、TGF-β1和IGF-1含量變化兩兩間呈極顯著相關(P<0.01),其中血清GH與HC和IGF-1、INS與TGF-β1極顯著正相關(P<0.01),血清GH與INS和TGF-β1、INS與HC和IGF-1、TGF-β1與IGF-1極顯著負相關(P<0.01),血清HC與TGF-β1顯著負相關(P<0.05)。

表1 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量

Table 1 Levels of GH, INS, HC, TGF-β1 and IGF-1 in cows’ serum during milk withdrawal period

時間Time指標Index(n=20)GH/(ng·mL-1)INS/(nIU·mL-1)HC/(ng·mL-1)TGF-β1/(ng·mL-1)IGF-1/(ng·mL-1)第0天0thday360.90±11.61Aa421.76±33.53F958.90±40.92B184.20±12.38B56.04±3.81A第1天1stday349.96±16.33Aa430.35±26.56F946.20±54.49B183.72±9.68B54.88±3.93A第3天3rdday328.12±11.57Ab482.43±11.67E1181.77±67.44A236.38±14.34A49.03±1.53B第5天5thday287.75±14.07B535.81±18.20D855.35±46.27C231.87±10.44A46.78±1.70B第7天7thday247.75±15.45C593.19±21.36C752.94±26.60D243.56±23.85A43.25±2.59Ca第9天9thday210.74±15.50D638.95±20.62B689.82±27.15E229.95±15.66A42.20±2.76Cab第11天11thday177.14±12.89E702.92±27.26A556.67±25.27F237.68±15.00A38.20±1.08Cb

同列數據后無相同大、小寫字母的分別表示處理間差異極顯著(P<0.01)與顯著(P<0.05)。

Data followed by no same uppercase or lowercase letters within the same column indicated significant difference atP<0.01 andP<0.05, respectively.

表2 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1的相關性

Table 2 Correlation between levels of GH, INS, HC, TGF-β1 and IGF-1 in cows’ serum during milk withdrawal period

指標IndexGHr值rvalueP值PvalueINSr值rvalueP值PvalueHCr值rvalueP值PvalueTGF-β1r值rvalueP值PvalueIGF-1r值rvalueP值PvalueGH——-0.956**<0.0010.824**<0.001-0.606**<0.0010.901**<0.001INS——-0.812**<0.0010.634**<0.001-0.885**<0.001HC——-0.296*0.0390.893**<0.001TGF-β1——-0.706**<0.001IGF-1——

r,相關系數;*與**分別代表相關性顯著(P<0.05)與極顯著(P<0.01)。

r, Correlation coefficient; * and ** indicated statistically significant correlation atP<0.05 andP<0.01, respectively.

3 討論

3.1 回乳期奶牛血清GH含量的變化

GH是一種由腦垂體分泌的單一肽鏈蛋白質激素,具有促進生長發育、調控泌乳等作用[9-10]。運用牛生長素可調節奶牛機體物質代謝,提高飼料轉化率,增加產奶量[11-12]。Macrina[13]研究表明,GH可提高奶??傃髁坎⒃黾痈闻K丙酸異生成糖的能力,降低總氧化量,提高乳腺血流量,促使奶牛動用機體儲存物質,增加葡萄糖利用率。對早期泌乳奶牛注射GH可提高乳房利用營養物質合成牛奶的效率,增加產奶量。Hadi等[14]和Kawashima等[15]均發現,奶牛GH受體和IGF-1表達量越高,產奶量越高,主要通過JAK2/STAT5信號通路、IGF-1和GH受體等增加乳腺血流量,降低外周組織對INS的應答,使營養成分向乳腺聚集,促進乳腺泌乳[16]。本研究結果顯示,在奶牛回乳過程中,GH含量呈下降趨勢,可能是減少了擠奶刺激,乳房GH受體表達受到抑制,進而反饋性的抑制垂體分泌GH,也可能是由于懷孕末期,為滿足胎犢宮內快速發育需求導致。

3.2 回乳期奶牛血清INS含量的變化

INS具有加強糖原合成、維持血糖恒定并調控泌乳等作用[17]。其可激活胰島素亞基受體I(IRS-I),通過配體約束力和自動磷酸化的誘導,促使INS受體蛋白位點生成,從而調控乳腺上皮細胞乳糖、乳脂的生物合成[18]。但INS對反芻動物乳腺發育的作用仍存在爭議,佟慧麗等[19]使用INS處理奶山羊乳腺上皮細胞,發現細胞活力無明顯變化。陳建暉等[20]使用INS對奶牛乳腺上皮細胞進行類似處理后細胞活力下降。田青等[21]表示INS對奶牛泌乳細胞生長及分化均有促進作用。本研究結果顯示,在奶牛回乳過程中,血清INS含量在第0至1天變化不顯著(P>0.05),在第3至11天依次升高且差異均極顯著(P<0.01),可能由于回乳期間GH含量降低,減少其對INS的抑制作用,并且由于懷孕后期宮內胎犢發育需要大量糖脂沉積,共同促進機體釋放INS。

3.3 回乳期奶牛血清HC含量的變化

HC是哺乳動物腎上腺皮質分泌的主要糖皮質激素之一,近年來,關于HC對提高奶牛泌乳量及改善乳品質逐漸成為研究熱點。HC主要通過結合乳腺細胞胞內核受體,啟動并調控泌乳相關基因表達和乳蛋白合成等相關基因組機制來實現其生理和藥理功能[22-23]。Kabotanski等[24]發現,HC能夠增強PRL對酪蛋白mRNAs累積,進而對奶牛乳腺上皮細胞增殖起重要調控。本研究結果顯示,在奶?;厝檫^程中,血清HC含量在第0至1天差異性不顯著(P>0.05),第3天極顯著高于其余各天(P<0.01),可能是由于奶牛飼糧成分和飼養環境等改變造成的應激使HC含量升高。第3至11天依次降低且差異均極顯著(P<0.01),推測在奶?;厝檫^程中,PRL表達量下降[25],促使乳腺減少其泌乳細胞胞內核受體表達量,反饋抑制腎上腺皮質分泌HC,降低產奶量,也從正面表明了HC在奶?;厝橹械闹匾饔?。

3.4 回乳期奶牛血清TGF-β1含量的變化

TGF-β1是一種多效的細胞因子,可影響上皮細胞增殖、凋亡并維持細胞外基質穩態,對于乳腺形態發生及分泌功能有重要作用。已有研究表明,TGF-β1可誘導乳腺上皮干細胞群衰老,抑制乳腺發育[26],并與乳腺泌乳的終止信號密切相關[27]。另外,TGF-β1可減少乳腺上皮細胞由PRL誘導的β-酪蛋白mRNA和蛋白表達水平,且對蛋白水平的抑制更明顯[28],說明,TGF-β1在牛乳腺退化過程中對抑制細胞生長起重要調控作用[29],Vries等[30]指出TGF-β1在奶?;厝楹?周內達到最高,本研究發現,在奶?;厝檫^程中,血清TGF-β1含量在第0至1天變化均不顯著(P>0.05),第0至1天極顯著低于第3至11天,且第3至11天差異性均不顯著(P>0.05),與上述研究結果趨勢一致,可能是由于奶牛GH降低,增強TGF-β1前體相關肽活性[31],促進乳腺中TGF-β1的表達,減少β-酪蛋白mRNA和蛋白水平,降低奶牛泌乳量。

3.5 回乳期奶牛血清IGF-1含量的變化

IGF-1是一類功能復雜的多肽因子,可促進乳腺泌乳,特別是介導GH的催乳作用[3]。研究表明,乳腺組織中存在IGF-1及其受體,對早期泌乳奶牛注射GH,增加了IGF-1及其受體表達量[13]。另外,IGF-1可直接通過其受體作用于乳腺,對乳腺最終分化完全、發育成熟、乳汁生成以及新生兒的生長發育有調控作用[32],Murney等[33]和Hernndez等[34]也均表示IGF-1與奶牛產奶量相關性顯著。本研究指出,在奶牛回乳過程中,血清IGF-1含量依次呈階梯式下降,而第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之間差異均不顯著(P>0.05),但第0至1天、第3至5天、第7至11天三階段之間差異極顯著(P<0.01),與上述結果趨勢一致,可能是由于GH降低,其與IGF-1結合減少,反饋抑制乳腺泌乳細胞泌乳。表明奶牛IGF-1不僅在奶牛青春期乳腺生長和泌乳期起正向調控,且在奶?;厝槠诳赏ㄟ^降低IGF-1含量的方法,促進奶牛回乳。

3.6 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1間的相關性

神經內分泌的多種激素與乳腺外組織及乳腺分泌的多種生長因子相互協同,以內分泌、旁分泌和自分泌等方式共同調節乳腺的生長發育和泌乳[2]。Rhoads等[12]研究表明,泌乳主要受GH調控,其主要通過IGF-1介導發揮泌乳作用[3],且在注射GH后,可提高奶牛產奶量[13]。本研究中,奶牛回乳期GH含量與IGF-1含量均降低,且呈極顯著正相關(P<0.01),表明在奶?;厝檫^程中,IGF-1和GH相互影響,協同調控奶牛泌乳,降低產奶量。另有研究資料表明,HC通過促進GH對葡萄糖的攝取方式,增加泌乳量[35],但INS與GH在泌乳過程中存在拮抗作用,當血清INS含量較高時,INS競爭性抑制GH表達,并調控葡萄糖轉運至非乳腺組織,使乳腺對葡萄糖攝取不敏感,而血清INS含量較低時,GH呈高表達,共同調節乳腺與乳腺外組織的營養競爭,使營養向乳腺轉移,促進乳腺發育和乳的合成[36]。本研究顯示,奶?;厝槠冢珿H與HC呈極顯著正相關,而與INS呈極顯著負相關(P<0.01),表明奶?;厝闀r,GH、HC均降低,而INS與GH仍存在明顯拮抗。有研究指出,在乳腺退化過程中,TGF-β1在轉錄水平及蛋白水平的表達均增加[37],抑制GH受體、IGF-1表達,減少HC活性[38],在INS促使機體營養物質不向乳腺聚集的基礎上,誘導乳腺導管快速退化[37]。本研究結果顯示,在奶牛回乳過程中,TGF-β1含量與GH、IGF-1含量呈極顯著負相關(P<0.01),與HC含量呈顯著負相關(P<0.05),與INS含量呈極顯著正相關(P<0.01),表明在奶?;厝槠?,GH、HC和IGF-1是奶牛回乳的負調控因子,而INS和TGF-β1是奶牛回乳的正調控因子。

[1] 文靜,卜登攀, 王建發, 等. 激素調控乳蛋白合成的作用及其分子機制[J]. 華北農學報, 2012, 27(增刊):111-115. WEN J, BU D P, WANG J F, et al.Progress in the regulation role of lactoprotein synthesis by hormone and its molecular mechanism[J].ActaAgriculturaeBoreali-Sinica, 2012, 27(Suppl.): 111-115.(in Chinese with English abstract)

[2] OGATA Y, YU G M, HIDAKA T, et al. Effective embryo production from Holstein cows treated with gonadotropin-releasing hormone during early lactation [J].Theriogenology, 2016, 86(6):1421-1426

[3] BACH L A. Insulin-like growth factor binding proteins—an update [J].PediatricEndocrinologyReviews:Per, 2015, 13(2):521-530.

[4] WANG J F, FU S P, LI S N, et al. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells [J].InternationalJournalofMolecularSciences, 2013, 14(11):21474-21488.

[5] 苗培. 催乳素及其受體的研究進展[J]. 中國畜牧獸醫文摘, 2016, 32(3):55. MIAO P. The research progress of prolactin and its receptor [J].ChinaAnimalHusbandryandVeterinaryAbstract, 2016, 32(3):55.(in Chinese)

[6] 黃利,李利民,劉之恒,等. 乳癖2號湯對乳腺增生豚鼠雌孕激素水平及病理形態的影響[J]. 四川中醫, 2013, 31(1):61-63. HUANG L, LI L M, LIU Z H, et al. Breast 2 soup for hyperplasia of mammary glands guinea pig female progesterone level and the influence of the pathologic morphology [J].JournalofSichuanofTraditionalChineseMedicine, 2013, 31(1):61-63.(in Chinese)

[7] ZOBEL G, LESLIE K. Gradual cessation of milking reduces milk leakage and motivation to be milked in dairy cows at dry-off [J].JournalofDairyScience, 2013, 96(8):5064-5071.

[8] TUCKER C B, LACY-HULBERT S J, WEBSTER J R. Effect of milking frequency and feeding level before and after dry off on dairy cattle behavior and udder characteristics[J].JournalofDairyScience, 2009, 92(7):3194-3203.

[9] STEYN F J. Nutrient sensing overrides somatostatin and growth hormone-releasing hormone to control pulsatile growth hormone release [J].JournalofNeuroendocrinology, 2015, 27(7):577-587.

[10] BROWN-BORG H M. Reduced growth hormone signaling and methionine restriction: Interventions that improve metabolic health and extend life span [J].AnnalsoftheNewYorkAcademyofSciences, 2015, 1363(1):40-49.

[11] FORSYTH I A, WALLIS M. Growth hormone and prolactin-molecular and functional evolution [J].JournalofMammaryGlandBiologyandNeoplasia, 2002, 7(3):291-312.

[12] RHOADS M L, MEYER J P, KOLATH S J, et al. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows [J].JournalofDairyScience, 2008, 91(5):1802-1813.

[13] MACRINA A L, KAUF A C W, KENSINGER R S. Effect of bovine somatotropin administration during induction of lactation in 15-month-old heifers on production and health [J].JournalofDairyScience, 2011, 94(9):4566-4573.

[14] HADI Z, ATASHI H, DADPASAND M, et al. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein Dairy Cows [J].IranianJournalofVeterinaryResearch, 2015, 16(3):294-298.

[15] KAWASHIMA C, MUNAKATA M, MATSUI M, et al. Polymorphism in promoter region of growth hormone receptor is associated with potential production capacity of insulin-like growth factor-1 in pre-pubertal Holstein heifers [J].JournalofAnimalPhysiologyandAnimalNutrition, 2016, 100(6):1037-1040.

[16] LUNDBERG E, KRISTROM B, JONSSON B, et al. Growth hormone (GH) dose-dependent IGF-I response relates to pubertal height gain [J].BMCEndocrineDisorders, 2015, 15(1):1-14.

[17] RIEHLE C, ABEL E D. Insulin signaling and heart failure [J].CirculationResearch, 2016, 118(7):1151-1169.

[18] AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows [J].JournalofDairyScience, 2006, 89(4):1222-1234.

[19] 佟慧麗,高學軍,李慶章,等. 胰島素、催乳素對奶山羊乳腺上皮細胞泌乳功能的影響[J]. 畜牧獸醫學報, 2008, 39(6):721-725. TONG H L, GAO X J, LI Q Z, ea al. Impacting of insulin and prolactin on mammary gland epithelial cell line [J].ChineseJournalofAnimalandVeterinarySciences, 2008, 39(6):721-725.(in Chinese with English abstract)

[20] 陳建暉,佟慧麗,李慶章,等. 胰島素、催乳素和孕酮對奶牛乳腺上皮細胞泌乳功能的影響[J]. 中國奶牛, 2008(8):9-13. CHEN J H, DONG H L, LI Q Z, et al. Influence of insulin, prolactin and progesterone on milk-secretion of mammary gland epithelial cell in dairy cow [J].ChinaDairyCattle, 2008, 8: 9-13.(in Chinese with English abstract)

[21] 田青,季昀,龐學燕,等. 胰島素對奶牛乳腺上皮細胞酪蛋白合成調節機理的研究[J]. 動物營養學報, 2013, 25(3):550-560. TIAN Q, JI Y, PANG X Y, et al. A study of insulin action mechanism on casein synthesis of bovine mammary epithelial cells [J].ChineseJournalofAnimalNutrition, 2013, 25(3):550-560.(in Chinese with English abstract)

[22] 李敏. 新型糖皮質激素對肥大細胞脫顆粒的快速作用及其機制研究[D]. 上海:第二軍醫大學, 2010. LI M. New glucocorticoid on mast cell degranulation quick effect and its mechanism [D]. Shanghai: Second Military Medical University, 2010.(in Chinese with English abstract)

[23] SHEEHY P A, NICHOLAS K R,WYNN P C. An investigation of the role of insulin in bovine milk protein gene expression in mammary explant culture [J].AsianAustralasianJournalofAnimalSciences, 2000, 13:272-275.

[24] KABOTYANSKI E B, RIJNKELS M, FREEMANZADROWSKI C, et al. Lactogenic hormonal induction of long distance interactions between Β-casein gene regulatory elements [J].JournalofBiologicalChemistry, 2009, 284(34):22815-22824.

[25] LITTLEJOHN M D, HENTY K M, TIPLADYi K, et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle [J].NatureCommunications, 2014, 5(4):5861-5861.

[26] YANG G, ZHOU J, TENG Y, et al. Mesenchymal TGF-β signaling orchestrates dental epithelial stem cell homeostasis through wnt signaling [J].StemCells, 2014, 32(11):2939-2948.

[27] GRONER B. Transcription factor regulation in mammary epithelial cells [J].DomesticAnimalEndocrinology, 2002, 23(23):25-32.

[28] KLLEINBERG D L, FELDMAN M, RUAN W. IGF-1: An essential factor in terminal end bud formation and ductal morphogenesis [J].JournalofMammaryGlandBiology&Neoplasia, 2000, 5(1):7-17.

[29] ZARZYNSKA J, GAJKOWSKA B, WOJEWODZKA U, et al. Apoptosis and autophagy in involuting bovine mammary gland is accompanied by up-regulation of TGF-beta1 and suppression of somatotropic pathway [J].PolishJournalofVeterinarySciences, 2007, 10(1):1-9.

[30] VRIES L D D, CASEY T, DOVER H, et al. Effects of transforming growth factor-β on mammary remodeling during the dry period of dairy cows [J].JournalofDairyScience, 2011, 94(12):6036-6046.

[31] ZHANG Y, MORGAN R, CHEN C, et al. Abstract A120: Tumor-educated B cells acquire LAP/TGF-β1 and PD-L1 expression and suppress antitumor immune response [J].CancerImmunologyResearch, 2016, 4(Suppl. 1):16-19.

[32] NAWATHE A R, CHRISTIAN M, KIM S H, et al. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders [J].ClinicalEpigenetics, 2016, 8(1):1-13.

[33] MURNEY R, STELWAGEN K, WHEELER T T, et al. The effects of milking frequency on insulin-like growth factor 1 signaling within the mammary gland of dairy cows [J].JournalofDairyScience, 2015, 98(8):5422-5428.

[34] HEERNANDEZ H, FLORES J A, DELGADILLO J A, et al. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats [J].AnimalScienceJournal, 2015, 87(4):484-491.

[35] 李蔚輝,魏學鑫. 糖皮質激素的信號轉導系統[J]. 亞太傳統醫藥, 2007, 3(12):21-25. LI W H, WEI X J. Signal transduction system of glucocorticoid [J].Asia-PacificTraditionalMedicine, 2007, 3(12):21-25.(in Chinese)

[36] 趙國麗,宮艷斌,韓元,等. 激素和生長因子調控奶牛乳腺發育的研究進展[J]. 中國奶牛, 2011 (6):25-30. ZHAO G L, GONG Y B, HAN Y, et al. Advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows [J].ChinaDairyCattle, 2011 (6):25-30.(in Chinese with English abstract)

[37] WUU W J, LEE C F, HSIN C H, et al. TGF-beta inhibits prolactin-induced expression of beta-casein by a Smad3-dependent mechanism [J].JournalofCellularBiochemistry, 2008, 104(5):1647-1659.

[38] SEERRA R, CROWLEY M R. Mouse models of transforming growth factor β impact in breast development and cancer [J].EndocrineRelatedCancer, 2006, 12(4):749-760.

(責任編輯 盧福莊)

Changes of GH, INS, HC, TGF-β1 and IGF-1 levels in cows’ serum during milk withdrawal period

SHEN Liuhong1, WU Xiaofeng1, XIAO Jinbang1, JIANG Sixun1, DENG Junliang1, ZUO Zhicai1, FU Hongqing2, CAO Suizhong1, YU Shumin1,*, ZHANG Yourui3

(1.TheKeyLaboratoryofAnimalDiseaseandHumanHealthofSichuanProvince,TheMedicalResearchCenterforCowDisease,CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Chengdu611130,China; 2.JiangsuAgri-animalHusbandryVocationalCollege,Taizhou225300,China; 3.AgriculturalBureauofLangfangCity,Langfang065000,China)

In order to explore the changes and correlation among the levels of growth hormone (GH), insulin (INS), hydrocortisone (HC), TGF-β1 and IGF-1 in cows’ serum during the period of milk withdrawal. Twenty healthy Chinese Holstein cows in late pregnancy that gave (15.43±2.10) kg milk per day were used, which were ready to dry milk. The day when cows began to dry milk was recorded as the 0 d. The cows’ venous blood from the tail on the day 0, 1, 3, 5, 7, 9 and 11 were collected. ELISA was used to evaluate the levels of GH, INS, HC, TGF-β1 and IGF-1 in serum to analyze the changes and correlation among them. The results showed that, during the period of milk withdrawal, the changes of GH, INS, HC and TGF-β1 levels in serum were not obvious from the day 0 to the day 1 (P>0.05). The levels of GH and HC in serum were both on the decline and had significant difference from the day 3 to the day 11 (P<0.01), and the levels of GH in serum on the day 3 was significantly higher than those on the other days (P<0.01). The levels of INS in serum was on the rise and had significant (P<0.01) difference from the day 3 to the day 11, while the levels of TGF-β1 in serum had no significant (P>0.05) difference from the day 3 to the day 11. The levels of IGF-1 in serum showed downward trend in ladder type, and the difference among levels of IGF-1 in serum on the day 0 and day 1, day 3 and day 5, day 7 and day 9, day 9 and day 11 were not obvious (P>0.05), while IGF-1 levels among 0-1 d, 3-5 d and 7-11 d had significant (P<0.01) difference. There was significant (P<0.01) correlation among the levels of GH, INS, TGF-β1 and IGF-1 in cows’ serum separately during the period of milk withdrawal. The HC levels showed significant (P<0.01) correlation with GH, INS and IGF-1 levels, while it showed significant (P<0.05) negative correlation with TGF-β1 levels.

cows in milk withdrawal period; GH; INS; HC; TGF-β1; IGF-1

http://www.zjnyxb.cn

10.3969/j.issn.1004-1524.2017.04.05

2016-11-01

四川省教育廳重點項目(15ZA0024);江蘇農牧科技職業學院產業發展關鍵技術創新項目(NSF201604);四川農業大學雙支計劃項目

沈留紅(1979—),男,江蘇如皋人,副教授,博士研究生,從事反芻動物疾病及繁殖新技術研究,E-mail:shenlh@sicau.edu.cn

*通信作者,余樹民,E-mail:yayushumin@163.com

S857.2;[S811.2]

A

1004-1524(2017)04-0548-07

浙江農業學報ActaAgriculturaeZhejiangensis, 2017,29(4): 548-554

沈留紅,巫曉峰,肖勁邦,等. 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化[J]. 浙江農業學報, 2017, 29(4): 548-554.

猜你喜歡
血清
血清免疫球蛋白測定的臨床意義
中老年保健(2021年3期)2021-08-22 06:50:04
Meigs綜合征伴血清CA-125水平升高1例
慢性腎臟病患者血清HIF-1α的表達及臨床意義
慢性鼻-鼻竇炎患者血清IgE、IL-5及HMGB1的表達及其臨床意義
血清H-FABP、PAF及IMA在冠心病患者中的表達及其臨床意義
血清IL-6、APC、CRP在膿毒癥患者中的表達及臨床意義
血清HBV前基因組RNA的研究進展
血清馴化在豬藍耳病防控中的應用
豬業科學(2018年8期)2018-09-28 01:27:38
LC-MS/MS法同時測定養血清腦顆粒中14種成分
中成藥(2017年8期)2017-11-22 03:18:47
血清胱抑素C與小動脈閉塞型卒中的關系
主站蜘蛛池模板: 手机永久AV在线播放| 国产爽妇精品| 中国国产A一级毛片| 亚洲精品视频免费看| 日韩精品视频久久| 激情五月婷婷综合网| 青草国产在线视频| 97精品久久久大香线焦| 大香网伊人久久综合网2020| 88av在线看| 免费一级全黄少妇性色生活片| 亚洲第一中文字幕| 久久久久久久久久国产精品| 亚洲一区毛片| 久久中文字幕不卡一二区| 亚洲综合中文字幕国产精品欧美| 精品久久蜜桃| 无码aⅴ精品一区二区三区| 理论片一区| 日韩欧美视频第一区在线观看| 精品无码一区二区三区电影| 高清久久精品亚洲日韩Av| 91精选国产大片| 在线观看欧美国产| 久久伊人操| 国产aⅴ无码专区亚洲av综合网| 欧美亚洲中文精品三区| 久久精品电影| 亚洲精品波多野结衣| 亚洲日韩精品无码专区97| 欧美区国产区| 99re66精品视频在线观看| 亚洲欧洲日韩久久狠狠爱| 在线观看亚洲成人| 一区二区理伦视频| 一级毛片a女人刺激视频免费| 久久a级片| 国产精品免费露脸视频| 亚洲色大成网站www国产| 五月婷婷激情四射| 亚洲一级色| 国产午夜一级毛片| 在线中文字幕日韩| 免费三A级毛片视频| 国产精品所毛片视频| 欧美成人精品高清在线下载| 免费看a毛片| 久久人人爽人人爽人人片aV东京热| 欧美福利在线| 日本精品αv中文字幕| 91po国产在线精品免费观看| 72种姿势欧美久久久大黄蕉| 国产小视频在线高清播放| 成人无码一区二区三区视频在线观看 | 97se亚洲综合在线| 国产噜噜噜视频在线观看| 国产乱码精品一区二区三区中文 | 国产黄色片在线看| 99热这里只有成人精品国产| 无码 在线 在线| 日本人又色又爽的视频| 成人一区在线| 日韩视频免费| 香港一级毛片免费看| 日韩亚洲高清一区二区| 2021亚洲精品不卡a| 久久亚洲精少妇毛片午夜无码| 国产精品久久久久鬼色| 久视频免费精品6| 亚洲天堂视频在线免费观看| 一级黄色网站在线免费看| 国产成人精品18| 国产久操视频| 最新国产午夜精品视频成人| 天天干天天色综合网| 日韩毛片免费| 亚洲成人77777| 少妇人妻无码首页| 国产精品亚洲精品爽爽| 青青草国产免费国产| 欧洲高清无码在线| 久久男人资源站|