陳國利鄭志方張學(xué)軍裴天祿張金光
[文章編號(hào)] 1672-8270(2017)06-0150-06 [中圖分類號(hào)] R-332 [文獻(xiàn)標(biāo)識(shí)碼] A
慢病毒攜帶shRNA對(duì)乳腺癌HPA基因表達(dá)的抑制作用*
陳國利①*鄭志方②張學(xué)軍①裴天祿③張金光④
目的:以乙酰肝素酶(HPA)基因?yàn)榘悬c(diǎn),構(gòu)建短發(fā)夾RNA(shRNA)慢病毒表達(dá)載體,研究慢病毒攜帶的shRNA對(duì)乳腺癌HPA基因表達(dá)的抑制作用。方法:以乳腺癌HPA基因?yàn)榘谢颍鶕?jù)RNA干擾(RNAi)序列設(shè)計(jì)原則,通過構(gòu)建3對(duì)shRNA重組慢病毒的表達(dá)載體,轉(zhuǎn)染乳腺癌MDA-MB-231細(xì)胞,在體外采用蛋白質(zhì)印跡(Western blot)法檢測(cè)HPA基因蛋白表達(dá)水平;在體內(nèi)構(gòu)建乳腺癌模型,通過免疫組化檢測(cè)HPA基因蛋白的表達(dá)。結(jié)果:在體外實(shí)驗(yàn)中,HPA-shRNA-1組和HPA-shRNA-2組均有效抑制了人乳腺癌MDA-MB-231細(xì)胞HPA的表達(dá)。在體內(nèi)實(shí)驗(yàn)中,HPA-shRNA-2組HPA基因蛋白的表達(dá)明顯低于陰性對(duì)照組及空白對(duì)照組,HPA-shRNA-2組陽性率與空白對(duì)照組比較,差異有統(tǒng)計(jì)學(xué)意義(x2=12.504,P<0.05)。表明在體內(nèi)實(shí)驗(yàn)中HPA-shRNA-2組可以下調(diào)HPA基因蛋白表達(dá)。結(jié)論:以HPA為靶點(diǎn)構(gòu)建shRNA重組慢病毒載體,體內(nèi)外實(shí)驗(yàn)均能下調(diào)乳腺癌HPA基因的表達(dá),可為乳腺癌靶向治療提供新的靶點(diǎn)。
乳腺癌;乙酰肝素酶;短發(fā)夾RNA;MDA-MB-231細(xì)胞;免疫組織化學(xué);蛋白質(zhì)印跡
乳腺癌是女性常見的惡性腫瘤,也是導(dǎo)致女性死亡主要腫瘤之一,且呈逐年上升趨勢(shì),嚴(yán)重威脅女性的身心健康,甚至生命安全。目前的研究認(rèn)為,乳腺癌是全身性疾病,病因尚不清楚,可能與乳腺良性疾病、雌激素、孕激素、環(huán)境因素以及生活方式等有一定關(guān)系,乳腺癌目前的治療方案與以往大不相同,目前以手術(shù)切除為主,配合放化療和內(nèi)分泌治療以及生物治療的個(gè)體化綜合治療。盡管乳腺癌患者5年生存率明顯提高,但是乳腺癌的復(fù)發(fā)和轉(zhuǎn)移仍然是導(dǎo)致患者死亡的主要原因,因此乳腺癌的復(fù)發(fā)轉(zhuǎn)移是急需攻克的難題。乙酰肝素酶(heparanase,HPA)是目前發(fā)現(xiàn)的一種能裂解硫酸乙酰肝素蛋白聚糖的β-D糖苷內(nèi)切酶,HPA通過降解細(xì)胞外基質(zhì)和誘導(dǎo)血管生成促進(jìn)乳腺癌的復(fù)發(fā)轉(zhuǎn)移[1]。本研究以HPA基因?yàn)榘悬c(diǎn)構(gòu)建HPA短發(fā)夾RNA(short hairpin RNA,shRNA)重組慢病毒表達(dá)載體,通過體內(nèi)、體外實(shí)驗(yàn)研究靶向抑制乳腺癌HPA基因表達(dá)的可行性,為乳腺癌的基因治療尋找新的靶點(diǎn)。
1.1 設(shè)備材料和試劑
(1)Thermo Forma培養(yǎng)箱(美國,Thermo Electron公司);Cytoprep-1離心機(jī)(長(zhǎng)沙英泰儀器有限公司)。
(2)慢病毒包裝293T細(xì)胞和人乳腺癌MDAMB-231細(xì)胞株均購自上海市中科院細(xì)胞庫;L-15培養(yǎng)基和胰酶購自美國Gibco公司;胎牛血清購自杭州四季青公司;Mouse monoclonal to Heparanase 1抗體購自英國abcam公司;慢病毒系統(tǒng)由上海吉瑪制藥技術(shù)有限公司合成;健康BALB/C雌性裸鼠購自上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司。
(3)細(xì)胞可溶性蛋白制備試劑購自上海GenMed Scientifics公司;Trizol試劑盒購自美國Invitrogen公司;SYBR Premix Ex Taq熒光實(shí)時(shí)定量PCR試劑盒購自日本TaKaRa公司;
1.2 體外實(shí)驗(yàn)方法
(1)乳腺癌MDA-MB-231細(xì)胞培養(yǎng)。乳腺癌MDA-MB-231細(xì)胞株接種于含10%胎牛血清L-15培養(yǎng)基中,放置于37℃、5%CO2培養(yǎng)箱內(nèi)培養(yǎng)。
(2)靶向HPA shRNA序列設(shè)計(jì)。以HPA為靶點(diǎn),根據(jù)shRNA序列設(shè)計(jì)原則,設(shè)計(jì)出的shRNA序列見表1。
(3)HPA shRNA慢病毒表達(dá)載體的構(gòu)建和重組慢病毒的包裝。將合成寡核苷酸片段退火形成雙鏈DNA,PCR擴(kuò)增、回收、純化。雙鏈DNA經(jīng)T4 DNAligase與線性化質(zhì)粒連接,轉(zhuǎn)化DH5α大腸桿菌,挑取重組陽性克隆進(jìn)行測(cè)序鑒定。將293T細(xì)胞進(jìn)行培養(yǎng),當(dāng)密度達(dá)到70%~90%開始轉(zhuǎn)染,用HPARNA干擾(RNA interfering,RNAi)序列重組質(zhì)粒和病毒包裝3個(gè)質(zhì)粒(pGag/Pol、pRev、pVSV-G),共轉(zhuǎn)染細(xì)胞293T,72 h后收集上清液,離心(10000 r/ min,3 min),過濾濃縮獲得慢病毒濃縮液,并測(cè)定慢病毒原液的滴度,分裝后在-80 ℃保存。

表1 HPA特異性干擾序列
(4)HPA shRNA重組慢病毒轉(zhuǎn)染乳腺癌MDAMB-231細(xì)胞效果檢測(cè)。實(shí)驗(yàn)中將細(xì)胞分為5組:①HPA-shRNA-1組;②HPA-shRNA-2組;③HPA-shRNA-3組;④HPA-陰性對(duì)照組;⑤空細(xì)胞組。其中,除空細(xì)胞組外的1~4組MDA-MB-231細(xì)胞分別感染HPA shRNA-1、HPA shRNA-2、HPA shRNA-3和HPA shRNA-陰性對(duì)照慢病毒,空細(xì)胞組未做任何處理。將感染后的細(xì)胞培養(yǎng)72 h后在熒光顯微鏡下觀察轉(zhuǎn)染效率。
(5)采用蛋白質(zhì)印跡(western blot)法檢測(cè)HPA的表達(dá)。轉(zhuǎn)染72 h后去除各組細(xì)胞培養(yǎng)液,用PBS洗滌細(xì)胞,通過RIPA裂解液裂解細(xì)胞,提取細(xì)胞總蛋白,采用考馬斯亮藍(lán)法蛋白定量,10% SDSPAGE電泳分離后轉(zhuǎn)移到PVDF膜,封閉轉(zhuǎn)印膜2 h,然后加入稀釋HPA單克隆抗體,于冰箱內(nèi)4 ℃溫育12 h,洗滌,加入稀釋二抗,在室溫溫育2 h后顯色,通過凝膠成像系統(tǒng)分析,采用3-磷酸甘油醛脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)為內(nèi)參照。
1.3 體內(nèi)實(shí)驗(yàn)方法
(1)動(dòng)物分組。采用24只雌性裸鼠,體重17~19 g,鼠齡約5周,將裸鼠采用數(shù)表法隨機(jī)分為HPA-shRNA-2組、陰性對(duì)照組和空白對(duì)照組3組,每組8只。
(2)構(gòu)建乳腺癌模型。將培養(yǎng)好的乳腺癌MDAMB-231細(xì)胞配制成1×109細(xì)胞/ml單細(xì)胞懸液。碘伏消毒裸鼠右側(cè)腋窩,取1×109細(xì)胞/ml單細(xì)胞懸液0.2 ml注射裸鼠右側(cè)腋窩皮下,裸鼠右側(cè)腋窩出現(xiàn)球形凸起;每日觀察腫瘤的生長(zhǎng)情況。
(3)HPA-shRNA重組慢病毒注射。將體外實(shí)驗(yàn)篩選出有效抑制乳腺癌MDA-MB-231細(xì)胞HPA表達(dá)的HPA-shRNA-2序列包裝成重組慢病毒。待腫瘤生長(zhǎng)至直徑約1 cm,采用瘤體多點(diǎn)注射法,將攜帶HPA-shRNA-2、HPA-陰性對(duì)照重組慢病毒(滴度
為1×108
TU/ml)導(dǎo)入各組裸鼠腫瘤灶,隔日1次,共4次,每只裸鼠注射總量400 μl,觀察裸鼠腫瘤的生長(zhǎng)情況。
(4)獲取腫瘤標(biāo)本。重組慢病毒注射移植瘤1個(gè)月后,將HPA-shRNA-2組、陰性對(duì)照組、空白對(duì)照組裸鼠分別逐一編號(hào)。麻醉后用手術(shù)刀完整剝離出腫瘤組織。將每個(gè)腫瘤組織以10%甲醛固定后編號(hào),采用石蠟包埋,做HE染色及免疫組織化學(xué)法檢測(cè)。
(5)免疫組織化學(xué)法檢測(cè)HPA蛋白的表達(dá)。24個(gè)腫瘤標(biāo)本切片、脫蠟、酒精水化和磷酸緩沖鹽溶液(phosphate buffer saline,PBS)沖洗。然后切片放于枸櫞酸鈉緩沖溶液中,高溫高壓修復(fù)抗原,通過PBS沖洗。加3%的H2O2,10 min后用PBS沖洗。用2%的山羊血清封閉30 min,去掉多余液體。加入一抗兔抗鼠HPA抗體,于冰箱內(nèi)4 ℃溫育12 h,取出放置37 ℃、1 h后沖洗,加入山羊抗兔IgG抗體,放置37 ℃、30 min后沖洗。通過DAB顯色劑顯色,沖洗后蘇木素復(fù)染,沖洗和脫水,透明干燥后封片。
(6)半定量評(píng)分法。鏡下隨機(jī)選取10個(gè)400倍視野,每個(gè)視野計(jì)數(shù)100個(gè)癌細(xì)胞。以癌細(xì)胞膜或細(xì)胞漿中出現(xiàn)黃褐色顆粒為陽性顯色,陽性細(xì)胞數(shù)分級(jí):陽性細(xì)胞數(shù)≤50%為0,50%<陽性細(xì)胞數(shù)<76%為1,陽性細(xì)胞數(shù)≥76%為2。染色強(qiáng)度分級(jí):無著色0,淺黃褐色1,黃褐色2。染色強(qiáng)度與陽性細(xì)胞數(shù)評(píng)分相乘為該標(biāo)本的陽性積分,陽性積分≥2為陽性表達(dá)標(biāo)本。
1.4 統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS 19.0統(tǒng)計(jì)軟件對(duì)所得數(shù)據(jù)進(jìn)行分析,對(duì)Western blot檢測(cè)HPA蛋白的表達(dá)結(jié)果進(jìn)行t檢驗(yàn)方差分析;免疫組織化學(xué)法檢測(cè)HPA基因蛋白的表達(dá)結(jié)果采用半定量評(píng)分法和卡方檢驗(yàn)及Fisher確切概率法檢測(cè),以P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2.1 體外實(shí)驗(yàn)結(jié)果
(1)HPA shRNA慢病毒表達(dá)載體的構(gòu)建和測(cè)序。構(gòu)建的特異性靶向抑制人HPA基因的3個(gè)重組慢病毒表達(dá)載體HPA shRNA-1、HPA shRNA-2、HPA shRNA-3,經(jīng)測(cè)序鑒定證實(shí)插入的堿基序列與設(shè)計(jì)的3個(gè)HPA shRNA序列完全一致,成功構(gòu)建HPA shRNA重組慢病毒表達(dá)載體。
(2)乳腺癌MDA-MB-231細(xì)胞感染HPA shRNA重組慢病毒效果檢測(cè)。用人乳腺癌MDA-MB-231細(xì)胞感染HPA shRNA重組慢病毒,將感染細(xì)胞培養(yǎng)72 h后檢測(cè)可見大部分MDA-MB-231細(xì)胞表達(dá)熒光蛋白,證明轉(zhuǎn)染效率較高(如圖1所示)。

圖1 感染72 h前后MDA-MB-231細(xì)胞(×200)
(3)Western blot檢測(cè)HPA表達(dá)。重組慢病毒轉(zhuǎn)染MDA-MB-231細(xì)胞,72 h后進(jìn)行WB實(shí)驗(yàn),檢測(cè)HPA蛋白相對(duì)表達(dá),結(jié)果5組分別為0.097±0.047、0.040±0.036、0.897±0.059、0.927±0.085和1.003±0.078。實(shí)驗(yàn)中HPA-shRNA-1組、HPA-shRNA-2組HPA蛋白的表達(dá)明顯低于陰性對(duì)照組和空細(xì)胞組,表明HPA-shRNA-1、HPA-shRNA-2能夠有效抑制HPA基因蛋白的表達(dá)。其結(jié)果如圖2、圖3所示。

圖2 WB檢測(cè)HPA蛋白表達(dá)電泳圖

圖3 WB檢測(cè)HPA蛋白表達(dá)
2.2 體內(nèi)實(shí)驗(yàn)結(jié)果
(1)HPA-shRNA重組慢病毒注射。腫瘤直徑約1 cm,將重組慢病毒注射腫瘤灶。如圖4、圖5所示。

圖4 注射前裸鼠乳腺癌模型

圖5 裸鼠注射重組慢病毒
(2)獲取腫瘤標(biāo)本。重組慢病毒注射裸鼠移植瘤1個(gè)月后,手術(shù)完整取出腫瘤組織。如圖6、圖7所示。

圖6 術(shù)前裸鼠乳腺癌移植瘤

圖7 術(shù)后裸鼠乳腺癌移植瘤
(3)免疫組織化學(xué)法檢測(cè)HPA蛋白的表達(dá)。結(jié)果采用半定量評(píng)分法和卡方檢驗(yàn)及Fisher確切概率法檢測(cè),采用半定量評(píng)分法所得數(shù)據(jù),通過卡方檢驗(yàn)及Fisher確切概率法檢測(cè),結(jié)果顯示,空白對(duì)照組HPA蛋白表達(dá)和陰性對(duì)照組相比無差異;實(shí)驗(yàn)中HPA-shRNA-2組HPA蛋白表達(dá)明顯低于空白對(duì)照組及陰性對(duì)照組,HPA-shRNA-2組陽性率與空白對(duì)照組比較,差異有統(tǒng)計(jì)學(xué)意義(x2=12.504,P<0.05)(見表2)。

表2 體內(nèi)實(shí)驗(yàn)乳腺癌HPA蛋白的表達(dá)
體內(nèi)實(shí)驗(yàn)HPA-shRNA-2組有效抑制HPA基因蛋白表達(dá)如圖8所示。

圖8 HPA基因蛋白表達(dá)電鏡圖(×400)
近年來的研究表明,HPA基因在多種惡性腫瘤中高表達(dá),如宮頸癌和子宮內(nèi)膜癌及黑色素瘤等[2-4]。亦有研究表明,HPA基因在乳腺癌組織中高表達(dá),而在癌旁正常組織呈低表達(dá)[5]。HPA作為葡萄糖醛酸酶,是唯一已知的哺乳動(dòng)物糖類內(nèi)切酶,能夠降解細(xì)胞表面和細(xì)胞外基質(zhì)的硫酸類肝素蛋白多糖促進(jìn)腫瘤轉(zhuǎn)移,并誘導(dǎo)腫瘤的血管生成和腫瘤周圍的炎癥反應(yīng),在大多數(shù)人類腫瘤中表達(dá)上調(diào)[6]。
腫瘤血管新生過程包括內(nèi)皮細(xì)胞的遷移和增殖,是腫瘤增殖和遷移過程的重要組成部分,是多因子參與、多步驟的復(fù)雜過程,可作為判斷惡性腫瘤轉(zhuǎn)移的重要標(biāo)志[7-8]。HPA是重要的細(xì)胞因子,促進(jìn)腫瘤血管形成,其活性與腫瘤血管形成有關(guān),參與血管內(nèi)皮細(xì)胞遷移。硫酸乙酰肝素蛋白多糖(heparan sulfate proteoglycans,HSPG)是細(xì)胞膜和細(xì)胞外基質(zhì)(extracellular matrixc,ECM)的主要成分,其結(jié)構(gòu)中有硫酸乙酰肝素側(cè)鏈,是生長(zhǎng)因子和細(xì)胞因子的儲(chǔ)存庫[9]。腫瘤細(xì)胞能分泌HPA,HPA能降解HSPG的HS鏈,從而破壞細(xì)胞周圍的陰離子和機(jī)械屏障,促進(jìn)細(xì)胞因子,包括血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)家族的蛋白水解作用[10]。VEGF是一種多功能細(xì)胞因子,在腫瘤血管形成過程中發(fā)揮重要作用,其能刺激靜止的內(nèi)皮細(xì)胞增殖和遷移,從而形成新的血管結(jié)構(gòu)[11-12]。此外,VEGF還可以增強(qiáng)細(xì)胞外信號(hào)調(diào)節(jié)激酶的磷酸化作用,以提高內(nèi)皮細(xì)胞的侵襲性和血管生成,HPA可以釋放細(xì)胞膜和ECM中HS側(cè)鏈儲(chǔ)存的VEGF等細(xì)胞因子,其產(chǎn)生的HS片段可以促進(jìn)細(xì)胞因子的活動(dòng),從而增加血管形成。HSPG與細(xì)胞增殖、分化和血管生成密切相關(guān)[13-15]。HS與促血管生成因子和抗血管生成因子相互作用,是重要的腫瘤血管形成調(diào)節(jié)器[16]。HPA裂解HS、基底膜并參與細(xì)胞外基質(zhì)重構(gòu),從而促進(jìn)腫瘤遷移和血管形成。HPA激活蛋白激酶B(protein kinase,PKB/Akt)信號(hào)通路,以促進(jìn)內(nèi)皮細(xì)胞遷移,激活Src(一種酪氨酸激酶)提高VEGF的表達(dá)水平,激活細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular regulated kinases,ERK)以增加syndecan-1的脫落,脫落的syndecan-1反過來作用于腫瘤微環(huán)境,從而促進(jìn)腫瘤生長(zhǎng)、擴(kuò)散和血管形成[17-20]。Syndecan由跨摸的HSPG組成,syndecan-1是其中一員[21]。VEGF與脫落的syndecan-1共同激活鄰近內(nèi)皮細(xì)胞的整合素和VEGF受體,從而促進(jìn)腫瘤血管形成。由此可見,HPA與惡性腫瘤侵襲、轉(zhuǎn)移以及腫瘤血管生成密切相關(guān),成為研究阻止惡性腫瘤轉(zhuǎn)移的新靶點(diǎn)。
細(xì)胞ERK調(diào)節(jié)腫瘤細(xì)胞增殖、耐藥性和血管生成,ERK通路的超活化導(dǎo)致乳腺癌的發(fā)生和轉(zhuǎn)移[22]。研究顯示,ERK的磷酸化和HPA密切相關(guān),而HPA和許多腫瘤的侵襲性相關(guān),胰島素受體廣泛存在于HPA高表達(dá)或低表達(dá)的細(xì)胞中,與低表達(dá)的細(xì)胞相比,在HPA高表達(dá)的細(xì)胞中,胰島素受體高度磷酸化。HPA在乳腺癌中高表達(dá),并且高表達(dá)HPA的乳腺癌細(xì)胞胰島素受體高度磷酸化,從而提高乳腺癌細(xì)胞的侵襲能力。HPA可以提高胰島素受體底物(insulin receptor substrate,IRS)的表達(dá)水平,IRS調(diào)節(jié)蛋白連接乳腺癌中的胰島素樣生長(zhǎng)因子1受體與下游信號(hào)通路,從而介導(dǎo)腫瘤細(xì)胞的增殖和轉(zhuǎn)移,IRS在調(diào)節(jié)乳腺癌細(xì)胞中受體酪氨酸激酶活性的過程中發(fā)揮重要作用[23-24]。HPA激活Src(一種酪氨酸激酶)提高VEGF的表達(dá)水平,VEGF-A調(diào)控黏著斑激酶(focal adhesion kinase,F(xiàn)AK)或磷脂酰肌醇-3-羥激酶與蛋白激酶B(PI3K/Akt)信號(hào)通路,從而調(diào)節(jié)腫瘤細(xì)胞遷移和入侵[25]。FAK是一種胞質(zhì)酪氨酸激酶,其位于整合素聚集的跨膜區(qū)域,調(diào)節(jié)多種細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路,HPA增強(qiáng)信號(hào)級(jí)聯(lián)作用,提高與侵襲性腫瘤惡化有關(guān)基因的轉(zhuǎn)錄水平[26-29]。
慢病毒載體是通過人類免疫缺陷病毒(human immunodeficiency virus,HIV-1)改造產(chǎn)生,傳遞遺傳物質(zhì)進(jìn)入細(xì)胞,是目前基因轉(zhuǎn)移的重要載體,其基因轉(zhuǎn)染效率高,對(duì)分裂細(xì)胞和非分裂細(xì)胞都有感染能力,且具有安全、低毒和高穩(wěn)定的特性[30-31]。RNAi技術(shù)是指在細(xì)胞內(nèi)外源性或內(nèi)源性雙鏈RNA靶向誘導(dǎo)同源mRNA特異性降解,為轉(zhuǎn)錄后基因的沉默現(xiàn)象。RNAi可以參與固有免疫反應(yīng),從而使細(xì)胞免受病原體(如病毒和細(xì)菌)入侵,沉默同源目標(biāo)靶基因的轉(zhuǎn)錄后表達(dá)[32]。RNAi通過不同的mRNA降解途徑抑制目標(biāo)基因的表達(dá),RNAi主要通過三種方式進(jìn)行基因調(diào)控:微小RNA、短發(fā)夾RNA和小干擾RNA[33]。本實(shí)驗(yàn)研究的RNA干擾方法是采用RNAi。慢病毒載體介導(dǎo)RNAi就是利用慢病毒載體的高效轉(zhuǎn)染及整合特性與RNAi特異性沉默同源基因表達(dá)作用相結(jié)合。
本研究實(shí)驗(yàn)以乳腺癌HPA基因?yàn)榘谢颍鶕?jù)RNA干擾序列設(shè)計(jì)原則,構(gòu)建3對(duì)HPA-shRNA重組慢病毒載體,在體外實(shí)驗(yàn)中,轉(zhuǎn)染MDA-MB-231細(xì)胞,通過Western blot檢測(cè)shRNA對(duì)HPA表達(dá)的抑制效果,表明實(shí)驗(yàn)HPA shRNA-1、HPA shRNA-2組均能夠抑制HPA基因蛋白的表達(dá)。在體內(nèi)實(shí)驗(yàn)中,實(shí)驗(yàn)HPA-shRNA-2組能夠下調(diào)HPA基因蛋白的表達(dá)。本研究表明,以乙酰肝素酶為靶點(diǎn)構(gòu)建的shRNA重組慢病毒表達(dá)載體,在體內(nèi)外實(shí)驗(yàn)均能有效抑制乳腺癌HPA基因的表達(dá),為乳腺癌的基因治療提供新的靶點(diǎn)。
[1]Barash U,Cohen-Kapaln V,Dowek I,et al.Proteoglycans in health and disease:New concepts for heparanase function in tumor progression and metastasis[J].FEBS J,2010,277(19):3890-3903.
[2]Varchalama E,Rodolakis A,Strati A,et al.Quantitative analysis of heparanase gene expression in normal cervical,cervical intraepithelial neoplastic,and cervical carcinma tissues[J].Int J Gynecol Cancer,2009,19(9):1614-1619.
[3]Inamine M,Nagal Y,Hirakawa M,et al.Heparanase expression in endometrial cancer:analysis of immunohistochemistry[J].J Obstet Gynaecol,2008,28(6):634-637.
[4]Roy M,Marchetti D.Cell Surface Heparan Sulfate Released by Heparanase Promotes Melanoma Cell Migration and Angiogenesis[J].J Cell Biochem,2009,106(2):200-209.
[5]Theodoro TR,De Matos LL,Sant Anna AV,et al. Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis[J].Neoplasia,2007,9(6):504-510.
[6]Purushothaman A,Babitz SK,Sanderson RD.Heparanase enhances the insulin receptor signaling pathway to activate extracellular signalregulated kinase in multiple myeloma[J].J Bilo Chem,2012,287(49):41288-41296.
[7]Park MS,Dong SM,Kim BR,et al.Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts[J].Oncotarget,2014,5(13):4929-4934.
[8]Chen Z,Xu S,Xu W,et al.Expression of cluster of differentiation 34 and vascular endothelial growth factor in breast cancer,and their prognostic significance[J].Oncol Lett, 2015,10(2):723-729.
[9]Lv B,Zhang B,Hu XY,et al.Heparanase regulates in vitro VEGF-C expression and its clinical significance to pancreatic ductal cell adenocarcinoma[J]. Oncol Lett,2016,11(2):1327-1334.
[10]Hammond E,Khurana A,Shridhr V,et al.The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics[J].Front Oncol,2014,4:195-210.
[11]Benedetto MD,Toullec A,H Buteaulozano,et al. MDA-MB-231 breast cancer cells overexpressing single VEGF isoforms display distinct colonisation characteristics[J].Br J Cancer,2015,113(5):773-785.
[12]Liu L,Tong Q,Liu S,et al.ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer[J].PloS One,2016,11(2):e0148774.
[13]Zachary I.VEGF signalling:integration and multitasking in endothelial cell biology[J].Biochem Soc Trans,2003,31(6):1171-1177.
[14]Purushothaman A,Uyama T,Kobayashi F,et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothlial invasion and angiogenesis[J].Blood,2010,115(12):2449-2457.
[15]Qiang B,Lim SY,Lekas M,et al.Perlecan heparan sulfate proteoglycan is a critical determinant of angiogenesis in response to mouse hind-limb ischemia[J].Can J Cardiol,2014,30(11):1444-1451. [16]van Wijk XM,van Kuppevelt TH.Heparan sulfate in angiogenesis:a target for therapy[J].Angiogene sis,2014,17(3):443-462.
[17]Gingisvelitski S,Zetser A,F(xiàn)lugelamn MY,et al. Heparanase induces endothelial cell migration via protein kinase B/Akt activation[J].J Biol Chem,2004,279(24):23536-23541.
[18]Zetser A,Bashenko Y,Edovitsky E,et al.Heparanase induces vascular endothelial growth factor expression:correlation with p38 phosphorylation levels and Src activation[J].Cancer Res,2006,66(3):1455-1463.
[19]Purushothaman A,Chen L,Yang Y,et al.Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma[J].J Biol Chem,2008,283(47):32628-32636.
[20]Purushothaman A,Uyama T,Kobayashi F,et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis[J].Blood,2010,115(12):2449-2457.
[21]Waisberg J,Theodoro TR,Matos LL,et al.Immunohistochemical expression of heparanase isoforms and syndecan-1 proteins in colorectal adenomas[J]. Eur J Histochem,2016,60(1):2590.
[22]Ho JY,Hsu RJ,Wu CH,et al.Reduced miR-550a-3p leads to breast cancer initiation,growth,and metastasis by increasing levels of ERK1 and 2[J]. Oncotarget,2016,7(33):53853-53868.
[23]Becker MA,Ibrahim YH,Oh AS,et al.Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer[J].PLoS One,2016,11(3):e0150564.
[24]Shaw LM.The insulin receptor substrate(IRS) proteins:At the intersection of metabolism and cancer[J].Cell Cycle,2011,10(11):1750-1756.
[25]Choi SK,Kim HS,Jin T,et al.Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A[J]. BMC Cancer,2016,16(1):570-584.
[26]Gao SL,Wang SL,Liu HY,et al.miR-200a inhibits tumor proliferation by targeting AP-2γ in neuroblastoma cells[J].Asian Pac J Cancer Prev,2014,15(11):4671-4676.
[27]Zhao X,Guan JL.Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis[J].Adv Drug Deliv Rev,2011,63(8):610-615.
[28]Ilan N,Elkin M,Vlodavsky I.Regulation,function and clinical significance of heparanase in cancer metastasis and angiogenesis[J].Int J Biochem Cell Biol,2006,38(12):2018-2039.
[29]Fuxl L,Ilan N,Sanderson ED,et al.Heparanase:busy at the cell surface[J].Trends Biochem Sci,2009,34(10):511-519.
[30]Masoud N,Karimi A,Allahbakhshian Farsani M.Production,purification and titration of a lentivirus-based vector for gene delivery purposes[J]. Cytotechnology,2014,66(6):1031-1038.
[31]Vannucci L,Lai M,Chiuppesi F,et al.Viral vectors:a look back and ahead on gene transfer technology[J].New Microbiol,2013,36(1):1-22.
[32]Ozcan G,Ozpolat B,Coleman RL,et al.Preclinical and clinical development of sh-RNA-based therapeutics[J].Adv Drug Deliv Rev,2015,87:108-119.
[33]Khatri N,Rathi M,Baradia D,et al.In vivo delivery aspects of miRNA,shRNA and shRNA[J]. Crit Rev Ther Drug Carrier Syst,2012,29(6):487-527.
Inhibitive effect of lentiviral vector carried shRNA for the expression level of HPA genes of breast cancer/
CHEN Guo-li, ZHENG Zhi-fang, ZHANG Xue-jun, et al//China Medical Equipment,2017,14(6):150-155.
Objective: To construct short hairpin RNA (shRNA) lentiviral expression vector by choosing HPA genes as the targeting point so as to investigate the inhibitive effect of lentiviral vector carryed shRNA for the expression level of heparanase (HPA) genes of breast cancer. Methods: The HPA genes were chosen as target gene, 3 pairs expression vectors of recombinant lentivirus carried shRNA were constructed according to the sequence designed principle of interfering RNA (RNAi) were transfected in MDA-MB-231 cell of breast cancer. Western Blot was used to detect the expression level of HPA gene in vitro, and the breast cancer model was constructed for vivo verification, and then the expression level of HPA gene was detected by using immunohistochemistry. Results: In vitro experiment, both of the HPA-shRNA-1 group and HPA-shRNA-2 group effectively inhibited the expression of HPA gene in MDA-MB-231 cells of breast cancer. In vivo experiment, the expression of HPA gene of HPA-shRNA-2 group was obviously lower than that of negative group and blank group. The difference of positive rate between HPA-shRNA-2 group and blank group was statistically significant (x2=12.504, P<0.05). And these results revealed that the expression of HPA gene in HPA-shRNA-2 group could be down-regulated in vivo experiment. Conclusion: The HPA is chosen as the targeting point to construct recombinant lentiviral vector carried shRNA, and the results of vitro and vivo experiment reveals that the expression of HPA gene can be down-regulated in the two groups. This result verifies that the new method can provide new targeting point for targeted therapy of breast cancer.
Breast cancer; HPA; shRNA; MDA-MB-231 cell; Immunohistochemistry; Western Blot
Department of The First Surgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, China.
10.3969/J.ISSN.1672-8270.2017.06.042
[文章編號(hào)] 1672-8270(2017)06-0150-06 [中圖分類號(hào)] R-332 [文獻(xiàn)標(biāo)識(shí)碼] A
陳國利,男,(1980- ),碩士研究生,主治醫(yī)師。承德醫(yī)學(xué)院附屬醫(yī)院外一科,從事乳腺癌基礎(chǔ)與臨床研究。
2017-02-28
承德市科學(xué)技術(shù)研究與發(fā)展計(jì)劃項(xiàng)目(20151029)“探討以HPA為靶點(diǎn)治療乳腺癌可行性”
①承德醫(yī)學(xué)院附屬醫(yī)院外一科 河北 承德 067600
②承德醫(yī)學(xué)院附屬醫(yī)院小兒內(nèi)科 河北 承德 067000
③承德市平泉縣醫(yī)院藥劑科 河北 平泉 067500
④承德市隆化縣醫(yī)院外二科 河北 隆化 068150
*通訊作者:chenguoli1015@126.com