覃方麗,袁耀,艾冠亞,王愛軍,張鴻羽
(1中國石油大學(北京)理學院,北京102249;2油氣光學探測技術北京市重點實驗室,北京102249;3中國石油和化工行業聯合會油氣太赫茲波譜與光電檢測重點實驗室,北京 100723)
三維有序大/介孔TiO2反opal光陽極制備及光電性能
覃方麗1,2,3,袁耀1,2,艾冠亞1,2,王愛軍1,2,3,張鴻羽1,2
(1中國石油大學(北京)理學院,北京102249;2油氣光學探測技術北京市重點實驗室,北京102249;3中國石油和化工行業聯合會油氣太赫茲波譜與光電檢測重點實驗室,北京 100723)
通過添加不同含量的造孔劑聚乙二醇 2000(PEG2000),在二氧化鈦反蛋白石結構(TiO2反 opal)光陽極骨架結構中引入介孔結構,制備出了三維有序大/介孔TiO2反opal光陽極。用SEM和TEM表征了該光陽極的表面形貌,應用紫外可見光譜表征了其染料吸附-脫附性能,測試了基于該光陽極結構的染料敏化太陽能電池的光電轉換特性和阻抗特性。結果表明,介孔結構的引入使TiO2反opal光陽極染料吸附能力增強,組裝為染料敏化太陽能電池(DSSCs)后光電轉換效率提高,電池交流阻抗降低。同時,隨著PEG2000含量的增加,光電轉換性能呈現先增加后減小的趨勢,這可能來源于過量的PEG2000可造成宏孔骨架結構的破壞。
制備;太陽能;納米材料;介孔;二氧化鈦;染料敏化
自從1991年O’Regan和Gratzel報告以低成本制備的染料敏化納米晶體太陽能電池獲得>7%的光電轉化效率[1],染料敏化太陽能電池(dye sensitized solar cells,簡稱DSSCs)由于結構簡單、成本低以及環境友好等優點,獲得廣泛關注[2-5]。光陽極是DSSCs的重要組成部分,它最初由TiO2納米晶燒結形成多孔膜構成。TiO2納米晶多孔膜結構具有較大的比表面積,有利于染料的吸附,但這種結構的無序性增加了自由電子的散射幾率,導致了電子遷移率和光電轉換效率的降低[6-8]。因此,最近有研究致力于用一維或者三維有序結構的 TiO2薄膜替代傳統的TiO2納米晶,如TiO2納米管[7-11]、納米線[12-13]、納米棒[14-17]、TiO2反opal(TiO2反蛋白石)結構[18-22]等。TiO2反opal結構膜是一種由彼此連通且骨架和直徑相同的 TiO2空心球呈面心立方排列的三維有序多孔材料。相比于傳統的TiO2納米晶,TiO2反opal結構膜的有序結構有利于電子的傳輸,具有可調的光子帶隙;其連通的孔狀結構有利于敏化劑的吸附和電解液離子的傳輸;其空心球狀結構,使入射光能夠被多次散射吸收,有利于提高光吸收效率[23-26]。
反opal結構材料用作光催化劑可以提高光催化效率[27-28]。近來,有研究顯示在 TiO2反 opal結構材料中引入介孔可進一步提高光催化效率[29-31]。反opal結構材料在引入介孔后,集大孔/介孔優點,將其用作染料敏化太陽能電池(DSSC)光陽極,有望進一步提高DSSC的光電轉換效率。因此,本研究旨在TiO2反opal結構中引入介孔結構作為DSSC的光陽極,研究其光電特性。采用分散性好,易混配的PEG2000作為造孔劑產生介孔,參考文獻[31]制備了三維有序大孔/介孔TiO2反opal光陽極。將制備出的3D(三維)大/介孔TiO2反opal結構材料作為光陽極,組裝DSSCs,測試其光電特性。并研究不同的PEG2000含量對光陽極表面形貌、染料吸附能力以及電池光電性能的影響,對介孔影響DSSCs光電性能的機理進行討論。
1.1 聚苯乙烯(PS)opal模板的制備
采用室溫漂浮自組裝法[32]制備PS opal模板,具體過程為:取自制粒徑為333 nm、單分散性小于5%的PS微球,與水和乙醇的混合溶液以一定比例超聲混合得到PS膠體懸濁液;將預先涂好TiO2致密層的導電玻璃以一定傾斜角度緩慢浸漬到 PS膠體懸濁液,幾秒鐘后緩慢提拉出,水平放置在空氣中。隨著乙醇和水的蒸發,PS微球在 TiO2致密層上組裝成厚度均勻的PS opal結構模板。
1.2 3D大/介孔TiO2反opal電極的制備
配制4份體積分數5%的鈦酸四異丙酯乙醇溶液,攪拌至混合均勻;向每份溶液分別加入不同質量的PEG2000,使得PEG2000質量分數分別為0%、1.4%、2.1%和2.8%,強力攪拌直至得到淡黃色透明穩定的溶膠;置于恒溫穩定環境陳化12 h待用。
將得到的opal模板垂直浸漬在上述溶膠5 min后緩慢提拉出來,放置于空氣中充分水解一段時間后于60℃烘箱中充分干燥,然后進行下一次浸漬—提拉過程,重復數次后置于有水蒸氣的氛圍中水解12 h。
水解過程使 PS微球表面同時引入造孔劑PEG2000和TiO2納米顆粒,但此時PS微球之間的間隙未能完全填滿,遂繼續采用液相沉積填充技術對PS opal模板進行完全填充。其具體過程為:配制 0.2 mol·L-1的氟鈦酸銨和 0.25 mol·L-1的硼酸的水溶液作為液相沉積反應液;將處理過的 PS模板豎直浸入盛有液相沉積反應液的燒杯中,且燒杯置入在45℃水浴中。讓反應過程進行30 min。完成填充后,在馬弗爐中以 2℃·min-1升溫至 450℃煅燒2 h,PS opal模板和造孔劑PEG2000在煅燒中被去除,得到三維(3D)有序大/介孔TiO2反opal膜。
1.3 染料吸附-脫附實驗
將如上步驟得到的3D有序大/介孔TiO2反opal薄膜用刀片刮出相同方形面積制備電極。將電極在100℃烘箱中干燥 30 min后取出,然后放入 N719染料中浸漬20 h后取出,用無水乙醇沖洗后晾干。
②石孝友《卜算子》(見也如何暮):雙調44字,上闋4句22字3仄韻,下闋4句22字3仄韻。句式:5575。5575。
將吸附了染料的 TiO2反 opal電極在 0.05 mol·L-1氫氧化鈉水溶液中浸泡15 h,待染料完全脫附后,用紫外-可見(UV-Vis)分光光度計測定脫附液的吸光度,用吸光度值表征電極染料吸附量。
1.4 DSSCs的組裝
使用熱封膜將染料敏化的3D有序大/介孔TiO2反opal光陽極與預先制成的Pt對電極封裝在一起,然后向預留的通道注入電解質液(1 mol·L-11,2-二甲基-3-丙基咪唑碘;0.12 mol·L-1I2,0.1 mol·L-1LiI,0.5 mol·L-14-叔丁基吡啶溶于3-甲氧基丙腈溶劑體系),最后用AB膠將通道密封,制備成DSSCs。
1.5 表征與測量
3D大/介孔TiO2反opal電極微觀結構采用FEIQuanta 200F場發射環境掃描電鏡(SEM)和JEOL JEM 2100 LaB6透射電鏡(TEM)表征;染料吸附-脫附實驗中脫附液吸光度采用 UV-Vis分光光度計(UV-2100PC)測量;DSSCs的伏安特性曲線和Nyquist譜圖采用CHI604B電化學工作站測量,照射光源為氙燈。
2.1 3D大/介孔TiO2反opal電極微觀形貌表征
圖1為添加不同含量造孔劑PEG2000和不添加造孔劑制備的TiO2反opal電極的SEM和TEM圖像。圖 1(a)和圖 1(e)顯示未添加 PEG2000制備的TiO2反opal電極是一種由彼此連通且骨架和直徑相同的TiO2空心球構成的3D有序材料,空心球呈面心立方結構排列且骨架結構致密,與文獻報道一致[31,33-34]。空心球的直徑大約為230 nm,稱之為大孔。大孔直徑比造孔劑PS微球333 nm的直徑小,認為是由煅燒過程中 PS微球的體積收縮引起的。圖1(b)~(d)和圖1(f)~(h)顯示添加PEG2000質量分數依次為1.4%、2.1%、2.8%制備的電極的表面形貌。與未添加PEG2000時的圖1(a)和(e)相比,圖1(b)~(d)和圖1(f)~(h)中,TiO2骨架的表面更加粗糙,而且表面有蠕蟲樣的小孔分布。這些小孔的尺寸主要介于10~40 nm之間,稱之為介孔。這表明通過添加PEG2000,成功地在TiO2反opal電極骨架結構中引入了介孔結構,得到了三維有序大/介孔 TiO2反 opal電極。對比圖 1(b)、(c)、(d)和圖 1(e)、(f)、(h),可以看出隨著 PEG2000摻入量的增加,介孔的數目和尺寸都有增大的趨勢。
2.2 電極染料吸附性能測試
圖2所示為UV-Vis分光光度計測試的不同含量PEG2000修飾后的 TiO2反opal電極染料吸附-脫附后的吸光度。

圖1 TiO2反opal電極的SEM和TEM圖Fig.1 SEM and TEM images of the TiO2-IOs treated by different PEG2000 content (inset images in (a)—(d) show enlarged top-view images)

圖2 不同含量PEG2000修飾的TiO2反opal電極染料吸附-脫附結果Fig.2 Dye absorption with different PEG2000-treatment
圖2顯示,通過PEG2000修飾引入介孔結構的TiO2反 opal電極脫附液吸光度比未經修飾的 TiO2反opal電極的吸光度更大,表明修飾后的電極具有更強的染料吸附能力。推測可能的原因是因為在TiO2反opal電極骨架引入介孔結構后,電極變得粗糙多孔,增大了比表面積,這與前面的SEM和TEM表征結果相吻合。并且隨著PEG2000添加量增加,對應的脫附液吸光度增加,表明此時在電極骨架引入了更多的介孔結構,染料吸附能力進一步增強。圖2顯示當PEG2000質量分數為2.8%時,對應的脫附液吸光度雖然比未引入介孔結構的TiO2反opal光陽極增加了15.78%,但卻比經2.1% PEG2000修飾的光陽極吸光度要小。這表明加入過量的PEG2000導致了過多的介孔結構,反而使得染料吸附能力減弱,這與前面SEM和TEM表征結果也相吻合。
2.3 引入介孔結構對DSSCs光電性能的影響
將未添加造孔劑和添加了不同含量造孔劑制備的TiO2反opal電極按照1.4節所述操作組裝成為DSSCs并測試其光電性能,測試的伏安特性曲線如圖3所示,相應的電池光電特性參數見表1。

圖3 不同含量PEG2000修飾的DSSCs伏安特性曲線Fig.3 Photocurrent-photovoltage characteristic curves of TiO2-IO DSSCs with different PEG2000-treatment

表1 不同含量PEG2000修飾的DSSCs光電特性參數Table 1 Photovoltaic performance parameters of DSSCs with different additive amount of PEG2000
圖3和表1表明,加入PEG2000,在TiO2反opal電極宏孔骨架中引入介孔結構后,DSSCs的短路電流密度和光轉化效率得到顯著提高,并且隨著PEG2000含量的增加,電池的短路電流密度(Jsc)和光轉化效率(Eff)呈現先上升再下降的趨勢,開路電壓(Voc)差異不大。其中,PEG2000質量分數為2.1%時,電池的短路電流密度和光轉換效率最大,分別為3.29 mA·cm-2和1.01%。這與未經引入介孔結構的DSSC相比,短路電流密度和光轉化效率分別提高了84.46%和60.73%。這一趨勢與TiO2反 opal電極染料吸附-脫附實驗結果趨勢一致。然而,根據前面染料吸附-脫附結果,在 PEG2000質量分數為2.1%時,相比于未經引入介孔結構的TiO2反 opal光陽極染料吸附量增加了 15.78%,小于短路電流密度和光轉化效率的提升值,這表明引入介孔造孔劑對TiO2反opal光陽極修飾后,DSSCs光電性能的增強不僅來源于光陽極染料吸附能力的增強,其他因素亦有貢獻,譬如,PEG2000的引入量可能對TiO2薄膜的連續性、TiO2晶粒的尺寸和結晶度造成影響,從而影響TiO2光陽極上的載流子遷移速度和效率以及電解液的離子通道。但是,所有電池的光電轉換效率低,原因可能是電池封裝工藝粗糙。
為了進一步研究在 TiO2反 opal電極骨架引入介孔結構對于 DSSCs光轉化過程的影響,采用CHI6O4B電化學工作站對普通的TiO2反opal電極和3D大/介孔TiO2反opal電極組裝的DSSCs進行了阻抗測試。圖4是摻入不同質量分數PEG2000對TiO2反opal電極進行改性后組裝DSSCs的Nyquist譜圖。

圖4 不同含量PEG2000修飾后DSSCs的Nyquist譜圖Fig.4 Nyquist spectra of DSSCs with different additive amount of PEG2000
如圖4所示,Nyquist譜圖是一個半圓,這個半圓對應的是電子在DSSCs中的交流阻抗。半圓半徑越小,說明電池的交流阻抗也越小。從圖中可以看出,隨著PEG2000添加量的增加,電池的交流阻抗呈現先降低再增大的趨勢。其中,PEG質量分數為2.1%時,電池的交流阻抗達到最小值。這一趨勢與電池的短路電流密度和光轉化效率的變化趨勢一致。由此可見,通過添加PEG2000在TiO2反opal光陽極引入介孔結構后DSSCs光電性能的提高,除了染料吸附能力增強有關外,還與DSSCs交流阻抗降低有關。
綜上所述,通過添加PEG2000在TiO2反opal光陽極引入介孔結構后,DSSCs光電性能顯著增強。其增強的原因包括介孔引入導致了光陽極染料吸附能力的增強以及組裝成為 DSSCs后電池交流阻抗的降低。此外,PEG2000的加入量可能對TiO2薄膜的連續性、TiO2晶粒的尺寸和結晶度造成影響,從而影響 TiO2光陽極上的載流子遷移速度和效率以及電解液的離子通道,最終影響光電流密度和光轉換效率。PEG2000的添加量存在最優值,高于此最優值,光陽極的染料吸附能力會減弱,交流阻抗會降低,光電流密度和光轉換效率相應降低,這可能是過量的 PEG2000造成了介孔數目和尺寸的增加,大量的大尺寸介孔甚至可能會造成TiO2宏孔骨架結構的破壞。
本文在填充液中添加PEG2000,成功制備出3D有序大/介孔TiO2反opal光陽極。研究表明,引入介孔后的光陽極染料吸附能力增強,組裝成為DSSCs后電池的交流阻抗降低,這使得 DSSCs光電性能顯著增強。但隨著 PEG2000添加量逐漸增加,所制備的DSSCs光電性能呈現先增加再降低的趨勢。其原因可能是過量添加PEG2000造成了大量的大尺寸的介孔對宏孔骨架結構的破壞,影響了染料的吸附能力、電池的交流阻抗、載流子的遷移以及電解液離子通道。
[1] O'REGAN B, GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films [J]. Nature, 1991, 353(6346): 737-740.
[2] MARTINSON A B F, HAMANN T W, PELLIN M J, et al. New architectures for dye-sensitized solar cells [J]. Chemistry, 2008, 14(15): 4458-4467.
[3] GRATZEL M. Dye-sensitized solar cells [J]. Journal of Photochemistry& Photobiology C Photochemistry Reviews, 2010, 110: 6595-6663.
[4] MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers [J]. Nature Chemistry, 2014, 6: 242-247.
[5] 付喬明, 趙春貴, 楊素萍. 3種紫細菌天然光合色素敏化DSSC光電轉化性能 [J]. 化工學報, 2014, 65 (8): 3202-3211 FU Q M, ZHAO C G, YANG S P. Photoelectric conversion performance of natural photosynthetic pigments from three typical members of purple bacteria for dye-sensitized solar cells [J]. CIESC Journal, 2014, 65 (8): 3202-3211
[6] BISQUERT J, CAHEN D, HODES G, et al. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J]. The Journal of Physical Chemistry B,2004, 108 (24): 8106-8118.
[7] MOR G K, SHANKAR K, PAULOSE M, et al. Use of highly-ordered TiO2nanotube arrays in dye-sensitized solar cells [J].Nano Letters, 2006, 6 (2): 215-218.
[8] CHENG H, ZHAO X J, SUI X T, et al. Fabrication and characterization of CdS-sensitized TiO2nanotube photoelectrode [J].Journal of Nanoparticle Research, 2011, 13 (2): 555-562.
[9] LEE W, KANG S H, MIN S K, et al. Co-sensitization of vertically aligned TiO2nanotubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electrochemistry Communications, 2008,10 (10): 1579-1582.
[10] SUN W T, YU Y, PAN H Y, et al. CdS quantum dots sensitized TiO2nanotube-array photoelectrodes [J]. Journal of the American Chemical Society, 2008, 130 (4): 1124-1125.
[11] KAI Z, NEALE N R, MIEDANER A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2nanotubes arrays [J]. Nano Letters,2007, 7: 69-74.
[12] MATT L, GREENE L E, JOHNSON J C, et al. Nanowire dye-sensitized solar cells [J]. Nature Materials, 2005, 4 (6): 455-459.
[13] LESCHKIES K S, DIVAKAR R, BASU J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices [J].Nano Letters, 2007, 7 (6): 1793-1798.
[14] GUO W, XU C, WANG X, et al. Rectangular bunched rutile TiO2nanorod arrays grown on carbon fiber for dye-sensitized solar cells [J].Journal of the American Chemical Society, 2012, 134 (9): 4437-4441.
[15] YIN L W, TANG R. Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO2/SrTiO3nanorod array heterostructures [J]. Journal of Materials Chemistry A, 2015, 3(33): 17417-17425.
[16] JIU J, ISODA S, WANG F, et al. Dye-sensitized solar cells based on a single-crystalline TiO2nanorod film [J]. Journal of Physical Chemistry B, 2006, 110 (5): 2087-2092.
[17] LIU B, AYDIL E S. Growth of oriented single-crystalline rutile TiO2nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2009, 131 (11):3985-3990.
[18] KWAK E S, LEE W, PARK N G, et al. Compact inverse-opal electrode using non-aggregated TiO2nanoparticles for dye-sensitized solar cells [J]. Advanced Functional Materials, 2009, 19 (7): 1093-1099.
[19] CHO C Y, MOON J H. Hierarchically porous TiO2electrodes fabricated by dual templating methods for dye-sensitized solar cells[J]. Advanced Materials, 2011, 23 (26): 2971-2975.
[20] SHIN J H, KANG J H, JIN W M, et al. Facile synthesis of TiO2inverse opal electrodes for dye-sensitized solar cells [J]. Langmuir,2011, 27 (2): 856-860.
[21] KIM H N, MOON J H. ZnO-treated TiO2inverse opal electrodes for dye-sensitized solar cells [J]. Current Applied Physics, 2013, 13 (5):841-845.
[22] ZHAO Z, LIU G, LI B, et al. Dye-sensitized solar cells based on hierarchically structured porous TiO2filled with nanoparticles [J].Journal of Materials Chemistry A, 2015, 3 (21): 11320-11329.
[23] PENG T, ZHAO D, DAI K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity [J]. The Journal of Physical Chemistry B, 2005, 109 (11):4947-4952.
[24] LEE S A, ABRAMS N M, HOERTZ P G, et al. Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells [J]. Journal of Physical Chemistry B, 2008, 112 (46): 14415-14421.
[25] DIGUNA L J, SHEN Q, KOBAYASHI J, et al. High efficiency ofCdSe quantum-dot-sensitized TiO2inverse opal solar cells [J].Applied Physics Letters, 2007, 91 (2): 737.
[26] SATO A, DIGUNA L J, SHEN Q, et al. Photoacoustic and photoelectrochemical characterization of inverse opal TiO2sensitized with CdSe quantum dots [J]. Japanese Journal of Applied Physics,2006, 45 (6B): 5563-5568.
[27] CHEN J, VON FREYMANN G, CHOI S, et al. Amplified photochemistry with slow photons [J]. Advanced Materials, 2006, 988(14): 1915-1919.
[28] CURTI M, SCHNEIDER J, BAHNEMANN D W, et al. Inverse opal photonic crystals as a strategy to improve photocatalysis: underexplored questions [J]. The Journal of Physical Chemistry Letters, 2015, 6 (19):3903-3910.
[29] DU J, LAI X, YANG N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities [J]. ACS Nano, 2011, 5 (1): 590-596.
[30] LIU J, LI M, WANG J, SONG Y, et al. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability [J]. Environmental Science & Technology,2009, 43 (24): 9425-9431.
[31] LIU W, WANG A, TANG J, et al. Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films [J]. Microporous and Mesoporous Materials, 2015, 204:143-148.
[32] WANG A, CHEN S L, DONG P. Rapid fabrication of a large-area 3D silica colloidal crystal thin film by a room temperature floating self-assembly method [J]. Materials Letters, 2009, 63 (18/19):1586-1589.
[33] WIJNHOVEN J, VOS W L. Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998, 281 (5378): 802-804.
[34] LIU W, ZOU B, ZHAO J, et al. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity [J]. Thin Solid Films, 2010, 518 (17): 4923-4927.
Three-dimensional ordered macro/mesoporous TiO2inverse opal electrode with enhanced dye-sensitized solar cells’ efficiency
QIN Fangli1,2,3, YUAN Yao1,2, AI Guanya1,2, WANG Aijun1,2,3, ZHANG Hongyu1,2
(1College of Science, China University of Petroleum, Changping, Beijing 1002249, China;2Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China;3Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, China Petroleum and Chemical Industry Federation,Beijing 100723, China)
Three dimensional(3D) ordered macro/mesoporous titanium dioxide inverse opal (TiO2-IO) electrodes were fabricated via a sol-gel method with polyethylene glycol(PEG2000) treatment. The effects of PEG2000-treatment on the formation of TiO2-IO, the photovoltaic parameters and dye sensitized solar cells (DSSCs)efficiency were investigated. Macroporous templates with oval structures were prepared by using the self-assembly of monodispersed polystyrene (PS) microspheres. Titanium alkoxide precursors containing PEG2000 (as the mesopore directing agent) were infiltrated into the macroporous templates. 3D ordered macro/mesoporous TiO2-IO films were obtained after removing the PS and PEG2000 by calcinations. This kind of 3D macro/mesoporous electrode results in a better dye absorbtivity and enhanced DSSC efficiency. The experiments demonstrate that this enhanced efficiency not only results from active sites to adsorb dye, but also may lie in the decreased characteristic impedances of the DSSCs, which is attributed to the introduction of the mesopores in the TiO2-IO electrode. However, an excessive quantity of PEG2000 results in a drop of photoelectric conversion efficiency because of the damage of the macroporous structure with excessive PEG-treatment.
fabrication; solar energy; nanomaterials; mesopore; TiO2; dye sensitized
date:2017-01-16.
Prof. WANG Aijun, wangaijun_88@aliyun.com
TQ 134.1
A
0438—1157(2017)07—2925—06
10.11949/j.issn.0438-1157.20170065
2017-01-16收到初稿,2017-04-14收到修改稿。
聯系人:王愛軍。
覃方麗(1977—),女,博士,副教授。