999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A HYPERGEOMETRIC EQUATION ON THE LINE BUNDLE OVER SL(n+1,R)/S(GL(1,R)×GL(n,R))

2017-07-18 11:47:12YANGXianghuiHEMinhuaZHULi
數(shù)學(xué)雜志 2017年4期

YANG Xiang-huiHE Min-huaZHU Li

(1.School of Science,Wuhan Institute of Technology,Wuhan 430205,China)(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

A HYPERGEOMETRIC EQUATION ON THE LINE BUNDLE OVER SL(n+1,R)/S(GL(1,R)×GL(n,R))

YANG Xiang-hui1,HE Min-hua1,ZHU Li1,2

(1.School of Science,Wuhan Institute of Technology,Wuhan 430205,China)(2.School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

In this paper,we study the di ff erential equation on the line bundle over the pseudo-Riemannian symmetric space SL(n+1,R)/S(GL(1,R)×GL(n,R)).We use Lie algebraic method,i.e.,Casimir operator to obtain the desired di ff erential operator.The di ff erential equation turns out to be a hypergeometric di ff erential equation,which generalizes the di ff erential equations in[1,3,5].

Casimir operator;pseudo-Riemannian symmetric space;line bundle;hypergeometric equation

1 Introduction

Hypergeometric functions play important roles in harmonic analysis over pseudo-Rieman nian symmetric spaces.Hyperbolic spaces are examples of pseudo-Riemannian symmetric spaces.There are a lot of work on hyperbolic spaces such as[3,4].Using a geometric method,Faraut obtained a second order di ff erential equation in the explicit case of hyperbolic spaces U(p,q;F)/U(1;F)×U(p-1,q;F)with F=R,C or H in[3].Later in an algebraic way,i.e.,through Casimir operator of sl(n+1,R),van Dijk and Kosters obtained a hypergeometric equation on the pseudo-Riemannian smmetric space SL(n+1,R)/GL(n,R)in[5].

A natural extension of[3,5]is harmonic analysis on the sections of vector bundles over pseudo-Riemannian symmetric spaces.Charchov obtained a hypergeometric equation on the sections of line bundles over complex hyperbolic spaces U(p,q;C)/U(1;C)×U(p-1,q;C)in his doctor thesis[1].The di ff erential equation in[1]is the same as the one in[3].In this paper we will follow the method in[6]to obtain the hypergeometric equation on the sections of line bundles over SL(n+1,R)/GL(n,R).When the parameterλis zero,our result degenerates to the di ff erential equation in[5].Our hypergeometric equation will be used to obtaining the Plancherel formula on the sections of the line bundle over SL(n+1,R)/S(GL(1,R)×GL(n,R))in a future paper.

2 Preliminaries and Main Result

LetG=SL(n+1,R)andH1=SL(n,R).We imbedH1inGas usual,i.e.,for anyLetHbe the subgroup ofG:

In what followstAdenotes the transpose of a matrixA.LetX1be the algebraic manifold of

defined by

for anyg∈Gand any(x,y).With this action,X1is transitive underG.Letx0=(e0,e0)∈X1wheree0is the fi rst standard unit vector in Rn+1,i.e.,e0=t(1,0,···,0).Then the stabilizer ofx0inGisH1.An elementary proof shows thatX1?G/H1.We also haveX?G/HwhereX={x∈Mn+1(R):rankx=trx=1},here Mn+1(R)is the space of all real(n+1)×(n+1)matrices.Gacts on Mn+1(R)by conjugation(see[5])

Let g=sl(n+1,R)be the Lie algebra ofG.The Killing form of g isB(X,Y)=2(n+1)trXYforX,Y∈g.The Killing form induces a measure onX1.With this measure,the Casimir operator Ω of g induces a second order di ff erential operator onX1.We call it the Laplace operator and den√ote it as□1.

Forλ∈R,set√be a continuous unitary character of R?.De fi ne a

characterχλofHasfor

LetD(X1)be the space of complex-valuedC∞-functions onX1with compact support.The action ofGonX1induces a representationUofGinD(X1):

and by inverse transposition a representationUofGinD′(X1).

We define

Becauseχλ=1 onH1,the above distributionsTcan be viewed as the bi-H1-invariant distributions onGsatisfyingU(h)T=χλ(h)-1T,h∈H.

Ifμ∈C,define

De fi nition 2.1Theχλ-spherical distributionsTonX1are the distributions onGsatisfying the following properties

?TisH1-invariant,

?T(hx)=χλ(h)T(x),h∈H,x∈X1,

?□′1T=μTfor someμ∈C.

As in[2],we define a mappingQ1:X1→R byQ1(x,y)=x0y0.We take the open subsetsX01={ (x,y)∈X1:Q1(x,y)<1}andX11={ (x,y)∈X1:Q1(x,y)>0}ofX1.

There is an averaging mappingdefined by

whereδis the Dirac measure andd(x,y)is aG-invariant measure onX1.De fi neξ:X1→R2

byξ(x,y)=(ξ1(x,y),ξ2(x,y))=(x0,y0).Thenwhereis the adjoint ofM1.Then we have the main theorem of this paper.

Theorem 2.1There is a second order di ff erential operatorLλon R such that the following formula holds

where

3 Proof of Main Result

We take a basis of g=sl(n+1,R)as

whereEαβ=(δαμδβν)μνis as usual.

OnX1we take the coordinates{x0,y0,x1,y1,···,xn-1,yn-1,xn}.Using(2.1),we followthe way in[6]to expressEαβas di ff erential operators onX1in terms of the coordinates{x0,y0,x1,y1,···,xn-1,yn-1,xn}.The results are

Following[1],let the functionFonX1be the formF(x,y)=F(x0,y0).We calculate the action of the Laplace operator □1or the Casimir operator Ω on such functions.BecauseFdepends onx0,y0only,we take Ω as

where the ‘other terms’are the combinations ofEkl(2≤kl≤n+1).With the coordinates{x0,y0,x1,y1,···,xn-1,yn-1,xn},using(3.1)-(3.5),we have

Now taking functionF(x0,y0)with the formwe obtain

Comparing(3.10)and(3.11),we haveThis completes the proof of Theorem 2.1.

[1]Charchov I.Harmonic analysis on line bundles over complex hyperbolic spaces[D].Leiden:Univ.Leiden,1999.

[2]van Dijk G.(GL(n+1,R),GL(n,R))is a generalized gelfand pair[J].Russian J.Math.Phys.,2008,15(4):548-551.

[3]Faraut J.Distributions sphriques sur les espaces hyperboliques[J].J.Math.Pures Appl.,1979,58:369-444.

[4]Han Yingbo,Feng Shuxiang.On complete hypersurfaces in hyperbolic space formHn+1(-1)[J].J.Math.,2013,33(5):767-772.

[5]Kosters M T,van Dijk G.Spherical distributions on the Pseudo-Riemannian space SL(n,R)/GL(n-1,R)[J].J.Funct.Anal.,1986,68:168-213.

[6]Lang S.SL2(R)[A].Volume 105 of Graduate Texts in Mathematics[C].Reprint of 1975 ed.,New York:Springer-Verlag,1985.

SL(n+1,R)/S(GL(1,R)×GL(n,R))上線叢的一個超幾何方程

楊向輝1,何敏華1,朱 理1,2

(1.武漢工程大學(xué)理學(xué)院,湖北武漢 430205)(2.武漢大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,湖北武漢 430072)

本文研究了偽黎曼對稱空間SL(n+1,R)/S(GL(1,R)×GL(n,R))線叢上的微分方程.利用李代數(shù)方法,即Casimir算子得到這個微分算子.這個微分算子是一個超幾何方程,這個結(jié)論推廣了文獻[1,3,5]中的微分方程.

Casimir算子;偽黎曼對稱空間;線叢;超幾何方程

O152.5

on:22E46;33C05

A Article ID: 0255-7797(2017)04-0667-05

date:2016-05-27Accepted date:2016-07-11

Supported by the Research Foundation of Education Department of Hubei Province(Q20121512).

Biography:Yang Xianghui(1980-),female,born at Xiantao,Hubei,lecturer,major in functional di ff erential equations.

主站蜘蛛池模板: 色135综合网| 久久综合成人| 亚洲精品手机在线| 国产精品无码影视久久久久久久| 91青青草视频| 免费在线观看av| AV无码无在线观看免费| 国产又爽又黄无遮挡免费观看| a级毛片一区二区免费视频| 在线国产毛片手机小视频| 久久精品66| 午夜天堂视频| 国产精品久久久精品三级| 精品国产电影久久九九| 夜夜拍夜夜爽| 久久人搡人人玩人妻精品| www.91在线播放| 免费观看男人免费桶女人视频| 欧美日韩免费| 国产啪在线91| 午夜国产精品视频黄| 欧美性色综合网| 99视频精品在线观看| 色偷偷男人的天堂亚洲av| 99在线视频网站| 欧美日韩精品综合在线一区| 亚洲国产欧美国产综合久久| 高清精品美女在线播放| 亚洲午夜福利在线| 人人看人人鲁狠狠高清| 国产精品男人的天堂| 亚洲性影院| 欧美中文字幕在线二区| 国产jizz| 一区二区三区四区在线| 国产精品美人久久久久久AV| 91精品国产一区| 人与鲁专区| 996免费视频国产在线播放| 成人在线视频一区| 欧美福利在线观看| 福利在线免费视频| 欧美精品色视频| 亚洲精品无码高潮喷水A| 精品精品国产高清A毛片| 四虎永久在线视频| 宅男噜噜噜66国产在线观看| 国产99免费视频| 97色婷婷成人综合在线观看| 午夜国产精品视频| 久久久久国色AV免费观看性色| 久久夜色撩人精品国产| 任我操在线视频| 国产在线精彩视频二区| 久久香蕉国产线| 亚洲天堂网视频| 精品国产黑色丝袜高跟鞋 | 无码网站免费观看| 久久香蕉国产线看观看式| 精品无码一区二区在线观看| 极品国产在线| 欧美亚洲欧美区| 国产午夜一级淫片| 无码免费的亚洲视频| 日本道综合一本久久久88| 亚洲国产亚洲综合在线尤物| 欧美中文字幕一区| jijzzizz老师出水喷水喷出| 欧美成人免费一区在线播放| 精品国产一区二区三区在线观看| 国产在线自乱拍播放| 综1合AV在线播放| 欧美a级在线| 久久久精品国产SM调教网站| 国产午夜在线观看视频| 国产美女视频黄a视频全免费网站| 国产成人做受免费视频| 奇米影视狠狠精品7777| 国产成人狂喷潮在线观看2345| 中文字幕人成乱码熟女免费| 亚洲黄色高清| 韩日无码在线不卡|