999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ON PROJECTIVE RICCI FLAT KROPINA METRICS

2017-07-18 11:47:12CHENGXinyueMAXiaoyuSHENYuling
數學雜志 2017年4期
關鍵詞:重慶

CHENG Xin-yue,MA Xiao-yu,SHEN Yu-ling

(School of Mathematics and Statistics,Chongqing University of Technology,Chongqing 400054,China)

ON PROJECTIVE RICCI FLAT KROPINA METRICS

CHENG Xin-yue,MA Xiao-yu,SHEN Yu-ling

(School of Mathematics and Statistics,Chongqing University of Technology,Chongqing 400054,China)

In this paper,we study and characterize projective Ricci fl at Kropina metrics.By using the formulas ofS-curvature and Ricci curvature for Kropina metrics,we obtain the formula of the projective Ricci curvature for Kropina metrics.Based on this,we obtain the necessary and sufficient conditions for Kropina metrics to be projective Ricci fl at metrics.Further,as a natural application,we study and characterize projective Ricci fl at Kropina metrics defined by a Riemannian metric and a Killing 1-form of constant length.We also characterize projective Ricci f l at Kropina metrics with isotropicS-curvature.In this case,the Kropina metrics are Ricci fl at metrics.

Finsler metric;Kropina metrics;Ricci curvature;S-curvature;projective Ricci curvature

1 Introduction

(α,β)-metrics form a special and very important class of Finsler metrics which can be expressed in the form),whereαis a Riemannian metric andβis a 1-from andφ=φ(s)is aC∞positive function on an open interval.In particular,whenφ=1+s,the Finsler metricF=α+βis called Randers metric.When,the Finsler metricis called Kropina metric.Randers metrics and Kropina metrics are bothC-reducible.However,Randers metrics are regular Finsler metrics and Kropina metrics are Finsler metrics with singularity.Kropina metrics were fi rst introduced by Berwald when he studied the two dimensional Finsler spaces with rectilinear extremal and were investigated by Kropina(see[4,5]).Kropina metrics seem to be among the simplest nontrivial Finsler metrics with many interesting application in physics,electron optics with a magnetic fi eld,dissipative mechanics and irreversible thermodynsmics(see[4,5,7]).Recently,some geometers found some interesting and important geometric properties of Kropina metrics(see[10-12]).

The Ricci curvature in Finsler geometry is the natural extension of the Ricci curvature in Riemannian geometry and plays an important role in Finsler geometry.A Finsler metricF=F(x,y)on ann-dimensional manifoldMis called an Einstein metric if it satis fi es the following equation on the Ricci curvatureRic

whereσ=σ(x)is a scalar function onM.In particular,a Finsler metricFis called a Ricci f l at metric ifFsatis fi es(1.1)withσ=0,that is,Ric=0.

TheS-curvatureS=S(x,y)is an important non-Riemannian quantity in Finsler geometry which was fi rst introduced by Shen when he studied volume comparison in Riemann-Finsler geometry(see[8]).Shen proved that theS-curvature and the Ricci curvature determine the local behavior of the Busemann-Hausdor ffmeasure of small metric balls around a point(see[9]).He also established a volume comparison theorem for the volume of metric balls under a lower Ricci curvature bound and a lowerS-curvature bound and generalized Bishop-Gromov volume comparison theorem in the Riemannian case(see[9]).Recent study shows that theS-curvature plays a very important role in Finsler geometry(see[2,9]).The Finsler metricFis said to be of isotropicS-curvature ifS(x,y)=(n+1)cF(x,y),wherec=c(x)is a scalar function onM.Further,ifc(x)=constant,thenFis said to be of constantS-curvature.

It is natural to consider the geometric quantities defined by Ricci curvature andS-curvature.Recently,Shen defined the concept of projective Ricci curvature in Finsler geometry.Concterely,for a Finsler metricFon ann-dimensional manifoldM,the projective Ricci curvaturePRicis defined by

It is easy to show that,if two Finsler metrics are pointwise projectively related Finsler metrics on a manifold with a fi xed volume form,then their projective Ricci curvature are equal.In other words,the projective Ricci curvature is projective invariant with respect to a fi xed volume form.

On the other hand,the projective Ricci curvature is actually a kind of weighted Ricci curvatures.See[6]and the de fi nition ofS-curvature in Section 2.We call a Finsler metricFthe projective Ricci fl at metric ifFsatis fi esPRic=0.In[1],the authors characterized projective Ricci fl at Randers metrics.

To state our main results,let us introduce some common notations for Kropina metrics.Letbe a Kropina metric on ann-dimensional manifoldM.Put

where “ ;” denotes the covariant derivative with respect to the Levi-Civita connection ofα.Further,put

where(aij) :=(aij)-1andbi:=aijbj.We will denoteri0:=rijyj,si0:=sijyjandr00:=rijyiyj,r0:=riyi,s0:=siyi,etc..

In this paper,by using Busemann-Hausdor ffvolume form,we will derive fi rstly the formula for the projective Ricci curvature of a Kropina metric in Section 3.Based on this,we can prove the following main theorem.

Theorem 1.1Letbe a Kropina metric on ann-dimensional manifoldM.ThenFis a projective Ricci fl at metric if and only ifαandβsatisfy the following equations

whereb:=‖βx‖αdenotes the length ofβwith respect toαand

By the de fi nition,the 1-formβis said to be a Killing form on Riemannian manifold(M,α)ifrij=0.The 1-formβis said to be a constant length Killing 1-form if it is a Killing form and has constant length with respect toα,equivalentlyrij=0 andsi=0.

For a Kropina metricF=α2/β,ifβis a constant length Killing 1-form with respect toα,we have the following theorem.

Theorem 1.2Letbe a Kropina metric with constant length Killing formβon ann-dimensional manifoldM.ThenFis a projective Ricci fl at metric if and only if there exists a functionλ=λ(x)such thatαis an Einstein metricαRic=λα2andβsatis fi es the following equations

For 1-formβ=bi(x)yionM,we say thatβis a conformal form with respect toαif it satis fi esbi;j+bj;i=ρaij,whereρ=ρ(x)is a function onMand “;” is the horizontal covariant derivative with respect toα.Ifρ=0,βis just a Killing form with respect toα.

In fact,for a Kropina metricF,the following four conditions are equivalent(see[10]):

(a)Fhas an isotropicS-curvature,S=(n+1)cF,wherec=c(x)is a function onM;

(b)r00=k(x)α2,wherek=k(x)is a function onM;

(c)S=0;

(d)βis a conformal form with respect toα.

So we can get the following conclusion.

Corollary 1.3Letbe a Kropina metric on ann-dimensional manifoldM.Assume thatFis of isotropicS-curvature,i.e.,S=(n+1)cF.ThenFis a projective Ricci fl at metric if and only ifFis Ricci fl at metric.

2 Preliminaries

LetFbe a Finsler metric on ann-dimensional manifoldMandGibe the geodesic coefficients ofF,which are defined by

For anyx∈Mandy∈TxM{0},the Riemann curvatureis defined by

The Ricci curvature is the trace of the Riemann curvature,which is defined byRic=Rmm.

For a Finsler metricF=F(x,y)on ann-dimensional manifoldM,define the Busemann-Hausdor ffvolume form ofFbydVF=σF(x)dx1∧dx2∧···∧dxn,where

and Vol denotes the Euclidean volume andBn(1)denotes the unit ball inRn.Then theS-curvatureSofFis given by

TheS-curvatureSmeasures the average rate of change of(TxM,Fx)in the directiony∈TxM.It is known thatS=0 for Berwald metrics.

(α,β)-metrics form an important class of Finsler metrics which can be expressed in the formis a Riemannian metric andβ=bi(x)yiis a 1-from with‖β‖α<b0on a manifold.It was proved thatF=αφ(β/α)is a positive de fi nite Finsler metric if and only ifφ=φ(s)is a positiveC∞positive function on(-b0,b0)satisfying the following condition(see[2]),where

Randers metricF=α+βis just the(α,β)-metric withφ=1+s.Whenφ=1/s,the metricis just the Kropina metric.It is easy to see that a Kropina metricis not a regular Finsler metric for|s|<b,but it is regular ifs>0.In this paper,we study regular Kropina metrics.Hence,we will always restrict our consideration to the domain whereβ=bi(x)yi>0 so thats>0.

LetGi(x,y)andαGi(x,y)denote the geodesic coefficients of an(α,β)-metricF=αφ(β/α)andα,respectively.We can express the geodesic coefficientsGias follows(see[2]).

where

In particular,for a Kropina metric,it follows from(2.5)that

Further,the Ricci curvature ofis given by(see[12])

which is proved by Zhang and Shen(see Proposition 5.1 in[12]).

3 Projective Ricci Flat Kropina Metrics

In this section,we will fi rst derive a formula for the projective Ricci curvature of a Kropina metric.Then we will characterize projective Ricci fl at Kropina metrics.By(1.3),the projective Ricci curvature is given by

By(2.6),we have

Thus

From(2.8),we obtain

Further,we have

Substituting(2.7),(3.6)and(3.7)into(3.1),we obtain the formula for projective Ricci curvature of Kropina metricas follows

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1The proof of the sufficient condition in Theorem 1.1 is trivial.We will mainly prove the necessary condition in Theorem 1.1.

Assume thatPRic=0,which is equivalent to 4b4β2×PRic=0.By(3.8),we obtain the following

The equation(3.9)is equivalent to the following equation

where

Rewrite(3.10)as

Becauseα2andβ2are relatively prime polynomials iny,by(3.14)and the de fi nition of,we know that there exist a scalar functionλ(x)such that

Then(3.9)can be simpli fi ed as

Sinceα2can’t be divided byβ,we see that(3.16)is equivalent to the following equations

First,di ff erentiating both sides of(3.17)with respect toyiyields

Contracting(3.19)withbigives

Removing the factorb2form(3.20),we obtain

By(3.18),we obtain

then rewrite(3.21)as following

This completes the proof of Theorem 1.1.

4 Applications

In this section,we will fi rstly study projective Ricci fl at Kropina metrics with constant lenght Killing 1-formβand prove Theorem 1.2.Letbe a non-Riemannian Kropina metric with constant length Killing 1-formβon ann-dimensional manifoldM,that isrij=0,sj=0.In this case,equation(3.8)simplely as follows

Assume thatPRic=0,which is equivalent to 4β2×PRic=0.By(4.1),we obtain the following

ThusαRicis divisible byα2,that is,there exists a functionλ(x)such that

Plugging(4.3)into(4.2)and dividing the common factorα2,we conclude that

Sinceα2can not be divided byβ,we see that(4.4)is equivalent to the following equations

This completes the proof of Theorem 1.2.

Now,let us consider projective Ricci fl at Kropina metrics with isotropicS-curvature.As we mentioned in Section 1,a Kropina metricFis of isotropicS-curvature,S=(n+1)cF,if and only ifS=0.In this case,from the equation(1.3),we know that

Hence,Fis projective Ricci fl at metric if and only ifFis Ricci fl at metric.

In[12],Zhang and Shen proved that every Einstein-Kropina metrichas vanishingS-curvature.In this case,PRic=Ric.They also have obtained the necessary and sufficient conditions for Kropina metrics to be Einstein metrics in[12].

[1]Cheng Xinyue,Shen Yuling,Ma Xiaoyu.On a class of projective Ricci fl at Finsler metrics[J].Publ.Math.Debrecen,2017,90(1-2):169-180.

[2]Cheng Xinyue,Shen Zhongmin.A class of Finsler metrics with isotropicS-curvature[J].Israel J.Math.,2009,169(1):317-340.

[3]Cheng Xinyue,Zhang Ting,Yuan Min’gao.On dually fl at and conformally fl at(α,β)-metrics[J].J.Math.,2014,34(3):417-422.

[4]Kropina V K.On projective two-dimensional Finsler spaces with a special metric[J].Trudy Sem.Vektor.Tenzor.Anal.,1961,11:277-292.

[5]Kropina V K.On projective Finsler spaces with a certain special form[J].Naun.Doklady Vyss.Skoly,Fiz.-Mat.Nauki,1959,2:38-42(in Russian).

[6]Ohta S.Finsler interpolation inequalities[J].Calc.Var.Partial Di ff.Equ.,2009,128:211-249.

[7]Shibata C.On Finsler spaces with Kropina metric[J].Rep.Math.Phys.,1978,13:117-128.

[8]Shen Zhongmin.Volume comparison and its applications in Riemann-Finsler geometry[J].Adv.Math.,1997,128:306-328.

[9]Shen Zhongmin.Lectures on Finsler geometry[M].Singapore:World Sci.Co.,2001.

[10]Xia Qiaoling.On Kropina metrics of scalar fl ag curvature[J].Di ff.Geom.Appl.,2013,31:393-404.[11]Yoshikawa R,Sabau S V.Kropina metrics and Zermelo navigation on Riemannian manifolds[J].Geom.Dedicata,2014,171(1):119-148.

[12]Zhang Xiaoling,Shen Yibing.On Einstein Kropina metrics[J].Di ff.Geom.Appl.,2013,31:80-92.

射影Ricci平坦的Kropina度量

程新躍,馬小玉,沈玉玲

(重慶理工大學數學與統計學院,重慶 400054)

本文研究和刻畫了射影Ricci平坦的Kropina度量.利用Kropina度量的S-曲率和Ricci曲率的公式,得到了Kropina度量的射影Ricci曲率公式.在此基礎上得到了Kropina度量是射影Ricci平坦度量的充分必要條件.進一步,作為自然的應用,本文研究和刻畫了由一個黎曼度量和一個具有常數長度的Killing 1-形式定義的射影Ricci平坦的Kropina度量,也刻畫了具有迷向S-曲率的射影Ricci平坦的Kropina度量.在這種情形下,Kropina度量是Ricci平坦度量.

芬斯勒度量;Kropina度量;Ricci曲率;S-曲率;射影Ricci曲率

O186.1

on:53B40;53C60

A Article ID: 0255-7797(2017)04-0705-09

date:2015-07-16Accepted date:2015-11-09

Supported by the National Natural Science Foundation of China(11371386)and the European Union’s Seventh Framework Programme(FP7/2007-2013)under grant agreement(317721).

Biography:Cheng Xinyue(1958-),male,born at Chongqing,professor,major in di ff erential geometry and its applications.

猜你喜歡
重慶
重慶人的浪漫
重慶客APP
新基建,重慶該怎么干?
公民導刊(2022年4期)2022-04-15 21:03:14
平凡英雄 感動重慶
當代黨員(2022年6期)2022-04-02 03:14:56
重慶人為什么愛吃花
數說:重慶70年“賬本”展示
當代黨員(2019年19期)2019-11-13 01:43:29
“逗樂坊”:徜徉相聲里的重慶味
視覺重慶
城市地理(2016年6期)2017-10-31 03:42:32
重慶非遺
在這里看重慶
今日重慶(2017年5期)2017-07-05 12:52:25
主站蜘蛛池模板: 日韩欧美中文字幕在线精品| 亚洲色图欧美| 美女毛片在线| 国产视频资源在线观看| 国内精品久久久久久久久久影视| 欧美自慰一级看片免费| 国产成人在线无码免费视频| 99热这里只有免费国产精品 | 亚洲综合狠狠| 欧美97色| 992Tv视频国产精品| 色视频久久| 99视频精品在线观看| 伊人久久精品无码麻豆精品| 亚洲成年人片| 日本中文字幕久久网站| 色偷偷一区| 99久久国产综合精品2020| 日本在线国产| 黄色污网站在线观看| 国产后式a一视频| 55夜色66夜色国产精品视频| 操美女免费网站| 成人午夜免费观看| 试看120秒男女啪啪免费| 国产高颜值露脸在线观看| 天天摸夜夜操| 亚洲视屏在线观看| 欧美精品成人| 精品无码一区二区三区电影| 日本不卡在线播放| 女人18毛片一级毛片在线 | 青青青伊人色综合久久| 国产高清在线观看91精品| a毛片在线播放| 欧美五月婷婷| 国产精品视屏| 欧美a在线| 欧美一区二区人人喊爽| 亚洲无码视频喷水| 精品伊人久久久大香线蕉欧美| 九色综合伊人久久富二代| jijzzizz老师出水喷水喷出| 亚洲青涩在线| 国产成人1024精品| 亚洲AV一二三区无码AV蜜桃| 蜜臀av性久久久久蜜臀aⅴ麻豆 | 亚洲天堂久久久| 欧美三级日韩三级| 久久不卡国产精品无码| 国产精品无码久久久久久| 91成人在线观看| 欧美精品1区| 激情综合网激情综合| 992Tv视频国产精品| 国产精品部在线观看| 亚洲国产天堂久久综合226114| 午夜国产理论| Aⅴ无码专区在线观看| 国产一区二区免费播放| 国内精品久久人妻无码大片高| 国产欧美视频综合二区| 亚洲AV电影不卡在线观看| 亚洲欧洲自拍拍偷午夜色无码| 亚洲成人免费看| 成人福利在线视频| 欧美国产中文| 精品第一国产综合精品Aⅴ| 中文字幕亚洲精品2页| 超清人妻系列无码专区| 国产成人综合在线观看| 无码人妻热线精品视频| 亚洲精品麻豆| 就去色综合| 国产成人精品2021欧美日韩| 91精品专区| 无码一区二区波多野结衣播放搜索| 欧美激情视频一区| 99久久99视频| 亚洲欧美另类久久久精品播放的| 乱人伦中文视频在线观看免费| 久久婷婷国产综合尤物精品|