999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLOBAL BOUNDEDNESS OF SOLUTIONS IN A BEDDINGTON-DEANGELIS PREDATOR-PREY DIFFUSION MODEL WITH PREY-TAXIS

2017-07-18 11:47:12MAWenjunSUNLiangliang
數學雜志 2017年4期
關鍵詞:模型

MA Wen-jun,SUN Liang-liang

(1.Longqiao College,Lanzhou University of Finance and Economics,Lanzhou 730101,China)(2.School of Mathematics and Statistics,Lanzhou University,Lanzhou 730030,China)

GLOBAL BOUNDEDNESS OF SOLUTIONS IN A BEDDINGTON-DEANGELIS PREDATOR-PREY DIFFUSION MODEL WITH PREY-TAXIS

MA Wen-jun1,SUN Liang-liang2

(1.Longqiao College,Lanzhou University of Finance and Economics,Lanzhou 730101,China)(2.School of Mathematics and Statistics,Lanzhou University,Lanzhou 730030,China)

In this paper,we study a Beddington-DeAngelis predator-prey di ff usion model with prey taxis,where the prey-taxis describes a direct movement of the predator in response to a variation of the prey.We prove that the global classical solutions are globally bounded by theLp-Lqestimates for the Neumann heat semigroup andLpestimates with Moser’s iteration of parabolic equations.

predator-prey;di ff usion;prey-taxis;classical solution;global boundedness

1 Introduction

In recent years,more and more attention were given to the reaction-di ff usion system of a predator-prey model with prey-taxis.For example,for the existence and uniqueness of weak solutions[1,11],the global existence and uniqueness of classical solutions[2,17,18],pattern formation induced by the prey-taxis[12],global bifurcation for the predator-prey model with prey-taxis[13],boundedness or blow up in a chemotaxis system[14-16].

In this paper,we study the following reaction-di ff usion system of a predator-prey model with Beddington-DeAngelis functional response and prey-taxis

where Ω is a bounded domain in RNwith smooth boundary?Ω,initial datau0(x),v0(x)∈C2+α()compatible on?Ω,andνis the normal outer vector on?Ω,uandvrepresent the densities of the predator and prey,respectively,d1,d2,n,h,e,m,a,b,c,r,Kare positive constants that stand for di ff usion coefficients,death rate ofu,intra-speci fi c competition ofu,conversion rate,consumption rate,predator interference,prey saturation constant,another saturation constant,intrinsic growth and carrying capacity ofv,respectively.

The Beddington-DeAngelis model(1.1)is similar to the well known Holling type II model with an extra termauin the denominator which models the mutual interference among predators.In 2008,Ainseba et al.[1]proposed a Holling type II model with preytaxis and established the existence of weak solution by Schauder fi xed point theorem and the uniqueness via duality technique.In 2010,Tao[2]gave the global existence and uniqueness of classical solution to Ainseba’s model by contraction mapping principle together withLpestimates and Schauder estimates of parabolic equations.In 2015,He and Zheng[3]proved further more that the global classical solution is globally bounded.

There were also many works published for model(1.1).For the ODE system corresponding to(1.1),Cantrell and Cosner[4]presented some qualitative analysis of solutions from the view point of permanence and the existence of a global asymptotic stable positive equilibrium;Hwang[5]demonstrated that the local asymptotic stability of the positive equilibrium implies its global asymptotic stability.Chen and Wang[6]presented the qualitative analysis of system(1.1)from the view point of local asymptotic stability of the positive constant steady state and the existence and nonexistence of a nonconstant positive steady state.Haque[7]investigated the the in fl uence of intra-speci fi c competition among predators in the original Beddington-DeAngelis predator-prey model and o ff ered a detailed mathematical analysis of the model.Yan and Zhang[8]studied model(1.1)without prey-taxis and obtained that the di ff usion can destabilize the positive constant steady state of the system.

However,the emergency of the prey-taxis makes it more difficult to deal with the original problems.It is known that the global existence and bounedeness of solutions in(1.1)without prey-taxis can be easily obtained by using energy estimates and bootstrap arguments.In this paper,however,we will prove that the global classical solutions of(1.1)are moreover globally bounded by using theLp-Lqestimates for the Neumann heat semigroup andLpestimates with Moser’s iteration of parabolic equations.

Throughout this paper,we assume thatχ(u)∈C1([0,+∞)),χ(u)≡ 0 foru>um,andχ′(u)is Lipschitz continuous,i.e.,|χ′(u1)-χ′(u2)|≤L|u1-u2| for anyu1,u2∈[0,+∞),whereumandLare two positive constants.The assumption ofχis a regularity requirement for our qualitative analysis,and the assumption thatχ(u) ≡ 0 foru>umhas a clear biological interpretation[1].Our main result is stated as follows.

Theorem 1Under the assumptions forχand initial data described above,the unique nonnegative classical solution of(1.1)is globally bounded.

The paper is organized as follows.We introduce some known results as preliminaries in Section 2.In Section 3,we give the proof of Theorem 1.

2 Preliminaries

First we introduce the well-known classicalLp-Lqestimates for the Neumann heat semigroup on bounded domains.

Lemma 1(see Lemma 1.3 in[9])Suppose(etΔ)t>0is the Neumann heat semigroup in Ω,and letλ1denote the fi rst nonzero eigenvalue of-Δ in Ω under Neumann boundary conditions.Then there existC1,C2>0 only depending on Ω such that the following estimates hold

(i)If 1≤q≤p≤+∞,then

for allω∈Lq(Ω);

(ii)If 2≤q≤p≤+∞,then

for allω∈W1,q(Ω).

One can obtain the boundedness ofvbased on the comparison principle of ODEs.

Lemma 2Let(u,v)be a solution of(1.1).Thenu≥0 and 0≤v≤K1=max{K,maxv0(x)}.

3 Proof of Theorem 1

In this section,we give proof of Theorem 1,which is motivated by Tao and Winkler[10].

Proof of Theorem 1

Step 1Boundedness of‖u‖L1(Ω).

Integrating the sum of the fi rst equation andetimes of the second equation in(1.1)on Ω by parts,we have

Step 2Boundedness of‖u‖Lp(Ω)withp≥ 2.

Multiplying the fi rst equation of(1.1)byup-1and integrate on Ω by parts,combining Lemma 2.2,we have

Together withχ(u)≤Mdue toχ∈C1andχ≡ 0 foru≥um.This yields

Multiply the second equation of(1.1)by-Δv,and integrate on Ω by parts to get

by the Young inequality.Choosing?=2d2,we have

withC6>0 depending on?1.By the Sobolev interpolation inequality and Lemma 2.2,we have for any?2>0 that

whereC7,C8>0 depending on?2.Applying the Gagliardo-Nirenberg inequality yields

for any?3>0,withC10>0 depending on?3.By Step 1,we know‖u‖1≤C5.So

withC11>0.Now fix?2,?3such thatFrom(3.4)-(3.6),we have

withC12>0.De finefor allt>0 with.By the Gronwall inequality,we havefor allt>0.

Step 3Boundedness of‖?v‖Lp(Ω)withp≥ 2.

By Lemma 2.1,we conclude that

Step 4Global boundedness.

On the basis of Steps 2 and 3,using Lemma A.1 in[10],we can obtain the global boundedness of solutions to(1.1)by the standard Moser iterative technique.

Remarkwe used the assumption thatχ′(u)is Lipschitz continuous,which is a necessary condition for existence of the global solutions(see[2]).

On the other hand,the intra-speci fi c competition termhu2makes our estimates easier,which is a “good” term.This also coincides with Haque’s[7]result that competition among the predator population is bene fi cial for both populations co-existence.

[1]Ainseba B E,Bendahmane M,Noussair A.A reaction-di ff usion system modeling predator-prey with prey-taxis[J].Nonl.Anal.:RWA,2008,9:2086-2105.

[2]Tao Y S.Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis[J].Nonl.Anal.:RWA,2010,11:2056-2064.

[3]He X,Zheng S N.Global boundedeness of solutions in a reaction-di ff usion system of predator-prey model with prey-taxis[J].Appl.Math.Lett.,2015,49:73-77.

[4]Cantrell R S,Cosner C.On the dynamics of predator-prey models with Beddington-DeAngelis functional response[J].J.Math.Anal.Appl.,2001,257:206-222.

[5]Hwang T W.Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J].J.Math.Anal.Appl.,2003,281:395-401.

[8]Chen W,Wang M.Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and di ff usion[J].Math.Comput.Model.,2005,42:31-44.

[10]Haque M.A detailed study of the Beddington-DeAngelis predator-prey model[J].Math.Biosci.,2011,234(1):1-16.

[8]Yan X P,Zhang C H.Stability and turing instability in a di ff usive predator-prey system with Beddington-DeAngelis functional response[J].Nonl.Anal.:RWA,2014,20:1-13.

[10]Winkler M.Aggregation vs.global di ff usive behavior in the higher-dimensional Keller-Segel model[J].J.Di ff.Eqs.,2010,248:2889-2905.

[10]Tao Y S,Winkler M.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].J.Di ff.Eqs.,2012,252:692-715.

[11]Bendahmane M.Analysis of a reaction-di ff usion system modeling predator-prey with prey-taxis[J].Netw.Heterog.Media,2008,3(4):863-879.

[12]Lee J M,Hillen T,Lewis M A.Pattern formation in prey-taxis systems[J].J.Biol.Dyn.,2009,3(6):551-573.

[13]Wang X L,Wang W D,Zhang G H.Global bifurcation of solutions for a predator-prey model with prey-taxis[J].Math.Meth.Appl.Sci.,2015,38:431-443.

[14]Xiang T.Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source[J].J.Di ff.Eqs.,2015,258(12):4275-4323.

[15]Winkler M.Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with growth source[J].Comm.Partial Di ff.Eqs.,2010,35(8):1516-1537.

[16]Horstmann D,Winkler M.Boundedness vs.blow up in a chemotaxis system[J].J.Di ff.Eqs.,2005,215(1):52-107.

[17]Wu S N,Shi J P,Wu B Y.Global existence of solutions and uniform persistence of a di ff usive predator-prey model with prey-taxis[J].J.Di ff.Eqs.,2016,260:5847-5874.

[18]Li X J.Global solutions for the ratio-dependent food-chain model with cross-di ff usion[J].J.Math.,2015,35(2):267-280.

一類帶食餌趨向的Beddington-DeAngelis捕食者-食餌擴散模型整體解的有界性

馬文君1,孫亮亮2

(1.蘭州財經大學隴橋學院,甘肅蘭州730101)(2.蘭州大學數學與統計學院,甘肅蘭州730030)

本文研究一類帶食餌趨向的Beddington-DeAngelis捕食者-食餌擴散模型,其中食餌趨向性描述的是捕食者對食餌數量變化而產生的一種正向遷移.利用Neumann熱半群的Lp-Lq估計和帶拋物型方程Moser迭代的Lp估計,獲得了該模型經典解的整體有界性.

捕食者-食餌;擴散;食餌趨向;經典解;整體有界性

??35B35;35K57;92D25

O175.26

on:35B35;35K57;92D25

A Article ID: 0255-7797(2017)04-0731-06

date:2016-03-15Accepted date:2016-04-22

Biography:Ma Wenjun(1987-),female,born at Gangu,Gansu,lecturer,major in partial di ff erential equations.

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 国产亚洲高清视频| 2020亚洲精品无码| 美女一区二区在线观看| 成人日韩精品| 久久人搡人人玩人妻精品| 青青草国产免费国产| 日韩精品成人网页视频在线| 一级一级一片免费| 任我操在线视频| 欧美国产三级| 亚洲综合片| 亚洲欧美成人在线视频| 国产夜色视频| 亚洲午夜福利在线| 亚洲国产精品不卡在线| 91久久天天躁狠狠躁夜夜| 伊人激情综合网| 夜夜操天天摸| 97se亚洲| 波多野结衣一区二区三区88| 日韩午夜福利在线观看| 色精品视频| 亚洲国产黄色| 久久久久人妻一区精品色奶水| 精品人妻无码中字系列| 午夜性刺激在线观看免费| 日日拍夜夜嗷嗷叫国产| 国产99精品视频| 欧美激情视频一区| 久久99精品久久久久纯品| 国产国产人成免费视频77777 | 自拍亚洲欧美精品| 91香蕉国产亚洲一二三区| 国产男女免费视频| 欧美一级在线看| 久久综合色视频| 国产91麻豆视频| 国产丰满大乳无码免费播放 | 亚洲欧美日韩中文字幕在线| 国产成人高精品免费视频| 在线毛片免费| 国产午夜人做人免费视频中文| 国产一区三区二区中文在线| 91国语视频| 玖玖精品视频在线观看| 国产96在线 | 国产新AV天堂| 国产精品999在线| 亚洲男人的天堂久久精品| 国产美女自慰在线观看| 99热这里只有精品在线观看| 尤物特级无码毛片免费| 亚洲天堂视频在线观看免费| 五月激激激综合网色播免费| 久99久热只有精品国产15| 久久99精品久久久久纯品| 伊人无码视屏| 亚洲手机在线| 精品一区二区三区中文字幕| 亚洲日韩欧美在线观看| 国产成人高清在线精品| 精品免费在线视频| 久久人搡人人玩人妻精品| 免费毛片a| 亚洲欧美日韩久久精品| 夜精品a一区二区三区| 免费A级毛片无码无遮挡| 亚洲视频影院| 新SSS无码手机在线观看| 婷婷中文在线| 福利片91| 日韩在线成年视频人网站观看| 18禁高潮出水呻吟娇喘蜜芽| 美女黄网十八禁免费看| 亚洲精品天堂在线观看| 国产精品极品美女自在线| 欧洲熟妇精品视频| 中文字幕亚洲另类天堂| 亚洲成人在线免费观看| 中国国产A一级毛片| 成人亚洲视频| 呦系列视频一区二区三区|