999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

2017-07-18 11:47:12YANGChangsenYANGChaojun
數(shù)學(xué)雜志 2017年4期

YANG Chang-sen,YANG Chao-jun

(College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

SOME OPERATOR INEQUALITIES OF MONOTONE FUNCTIONS CONTAINING FURUTA INEQUALITY

YANG Chang-sen,YANG Chao-jun

(College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)

In this paper,we study the relations between the operator inequalities and the operator monotone functions.By using the fundamental conclusions based on majorization,namely,product lemma and product theorem for operator monotone functions,we can give some operator inequalities.This result contains the Furuta inequality,which has a huge impact on positive operator theory.

operator monotone function;product lemma;product theorem;majorization

1 Introduction

LetJbe an interval such thatJ/(-∞,∞).P(J)denotes the set of all operator monotone functions onJ.We setP+(J)={f∈P(J)|f(t)≥0,t∈J}.Iff∈P+(a,b)and-∞<a,thenfhas the natural extension to[a,b),which belongs toP+[a,b).We therefore identifyP+(a,b)withP+[a,b).

It is well-known that iff(t)∈P+(0,∞),thenare both inP+(0,∞),and that iff(t),φ(t),φ(t)are all inP+(0,∞),then so are

andf(t)αφ(t)1-αfor 0<α<1(see[1-5]).Throughout this work,we assume that a function is continuous and increasing means “strictly increasing”.Further more,for convenience,letB(H)denote theC?-algebra of all bounded linear operators acting on a Hilbert spaceH.A capital letterAmeans an element belongs toB(H),Φ means a positive linear map fromB(H)toB(H)and we assume Φ(I)=Ialways stand(see[7,8]).In this paper,we also assume thatJ=[a,b)orJ=(a,b)with-∞≤a<b≤+∞.

De fi nition 1.1[9,10]Letdenote the following sets,respectively,

whereh-1stands for the inverse function ofh.

De fi nition 1.2Leth(t)andg(t)be functions defined onJ,andg(t)is increasing,thenhis said to be majorized byg,in symbolh≤gif the compositeh?g-1is operator monotone ong(J),which is equivalent to

Lemma 1.1(Product lemma)(see[9,10])Leth,gbe non-negative functions defined onJ.Suppose the producthgis increasing,(hg)(a+0)=0 and(hg)(b-0)=∞.Then

Moreover,for everyψ1,ψ2inP+[0,∞),

Theorem 1.1(Product theorem)(see[9,10])

Further,letgi(t)∈LP+(J)for 1≤i≤mandhj(t)∈P-1+(J)for 1≤j≤n.Then for everyψi,φj∈P+[0,∞),we have

2 Main Results

Before to prove our main results,we give the following lemmas.

Lemma 2.1(L-H inequality)(see[2,12])If 0≤α≤1,A≥B≥0,thenAα≥Bα.

Lemma 2.2(Furuta inequality)(see[6,9])LetA≥B≥0,then

wherer≥0,p≥1 with

Lemma 2.3(Hansen inequality)(see[13])LetXandAbe bounded linear operators onH,and such thatX≥ 0,‖A‖≤1.Iffis an operator monotone function on[0,∞),then

Theorem 2.1PutJ/=(-∞,∞),,fi∈P+(J),i=1,2,···,n,,andkn(t)=f1(t)f2(t)···fn(t).Ifh(t)is defined onJsuch that,then

(i)the functionφnon(0,∞)defined by

belongs toP+(0,∞);

(ii)ifA≤C≤B,then

Proof(i)Sincef1(t)f1(t)h(t),by product lemmah(t)f1(t)h(t),thereforeh(t)is nondecreasing.When,since,we haveη(t)g(t).Now puttingψ0(s)=s,ψ1(g)=η,ψ2(f1h)=f1,obviously,we haveψ0,ψ1,ψ2∈P+(0,∞).By takingsinψ0(s)asf2···fn,and from product theorem,we obtain

Therefore we haveφnbelongs toP+(0,∞)forφngiven in(i).

Wheng(t)=f1(t),by takingψ0(s)=s,ψ1(g(t)h(t))=η(t),we haveψ0,ψ1∈P+(0,∞),and thenφn∈P+(0,∞)by product theorem.

(ii)First we prove that

Sinceφn,kn,h,gare all nonnegative,nondecreasing functions andJis a right open interval,by consideringC+?,B+?,we may assume that,h(C),h(B),g(C),g(B)are positive semi-de fi nite and invertible.Through(i),

This implies the right part of(2.2)holds forn=1.Next we assume the right part of(2.2)holds forn-1.Sinceandand this means that there existssuch thatfn(t)= Ψn(kn-1(t)η(t)).Puts=kn-1(t)η(t),we can obtain.Since the following inequality holds

Denote the left side of the upper inequalities asH,the right one asK,we have

ByH=φn-1(kn-1(C)h(C)g(C))=kn-1(C)η(C),we obtain

By Lemma 2.3 again,we obtain

From the above inequalities and(2.4),we get

Therefore the right part of(2.2)holds forn,one can proof the left part of(2.2)similarly.

RemarkIn Theorem 2.1,letn=2,f1(t)=g(t)=1,f2(t)=tr(r≥0),h(t)=tp(p≥1),andη(t)=t,then we haveφ2(tp+r)=t1+r.So Furuta inequality can be obtained by(2.2)and L-H inequality.

Lemma 2.4(see[10,11])PutJ(-∞,∞),theng∈LP+(J)if and only if there exists a sequence{gn}of a fi nite product of functions inP+(J)which converges pointwise togonJ,further more,{gn}converges uniformly togon every bounded closed subinterval ofJ.

Theorem 2.2PutJ(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,then

(i)the functionφon(0,∞)defined by

belongs toP+(0,∞);

(ii)IfA≤C≤B,then forφ∈P(0,∞)such thatφ≤φon(0,∞),

Proof(i)First consider,thenk=lfand

Letψ0(s)=s,ψ1(f(t)h(t))=f(t),ψ2(g(t))=η(t),thenψ0,ψ1,ψ2∈P+(0,∞).By takings=l(t)and applying product theorem,we get

which equals tok(t)η(t)≤k(t)h(t)g(t).So we haveφ∈P+(0,∞)forφsuch that

Ifg=f,takingψ0(s)=s,ψ1(h(t)g(t))=η(t),obviously,we haveψ0,ψ1∈P+(0,∞),and thenψ0(k)ψ1(hg).Hence we also haveφ∈P+(0,∞)from product theorem.

(ii)From Lemma 2.4,we obtain there exists a sequence{ln},whereln(t)is a fi nite product of functions inP+(J),such thatln(t)converges ponitwise tol(t).Putkn(t)=f(t)ln(t)then we easily getkn(t)converges tok(t)=f(t)l(t).De fi neφn(kn(t)h(t)g(t))=kn(t)η(t)(t∈J),φn∈P+(0,∞).By Theorem 2.1,we have

Lemma 2.5(Choi inequality)(see[6,7])Let Φ be a positive unital linear map,then

(C1)whenA>0 and-1≤p≤0,then Φ(A)p≤Φ(Ap);

(C2)whenA≥ 0 and 0≤p≤1,then Φ(A)p≥ Φ(Ap);

(C3)whenA≥ 0 and 1≤p≤2,then Φ(A)p≤Φ(Ap).

Corollary 2.1PutJ/=(-∞,∞),f(t)>0 fort∈Jandη(t),h(t),k(t),g(t)are nonnegative functions onJsuch that,the functionφon(0,∞)defined as(2.5),Φ is a positive unital

linear map.If

then forφ∈P(0,∞)such thatφ≤φ,

ProofBy Choi inequality and L-H inequality,we obtain

Corollary 2.2Put

such that.Then(2.5)and(2.6)in Theorem 2.2 hold.

ProofPutc=min{ 1,p},thenf(t)=t1-c∈P+(0,∞).Thus we get

which means the conditions of Theorem 2.2 is satis fi ed.Therefore(2.5)and(2.6)in Theorem 2.2 hold.

Corollary 2.3Put,p,r≥0 andp+r≥1,s≥1,we obtain

ProofPutg(t)=ts(s≥1),η(t)=tin Corollary 2.2.Then we only need to show logs≤φ(s),s∈(0,∞).The de fi nition ofφis given in(2.5).The upper majorization relationship is equivalent to

It is obviously that logk(t),logh(t),logtsare operator monotone on(0,∞)and,then

Therefore(2.8)holds.

[1]Bhatia R.Matrix analysis[M].New York:Springer,1996.

[3]Horn R A,Johnson C R.Matrix analysis[M].Cambridge:Cambridge Univ.Press,1985.

[4]Rosenblum M,Rovenyak J.Hardy classes and operator theory[M].Oxford:Oxford Univ.Press,1985.

[5]Pedersen G K.Some operator monotone functions[J].Proc.Amer.Math.Soc.,1972,36:309-310.

[6]Choi M D.Some assorted inequalities for positive linear map onC?-algebras[J].J.Oper.The.,1980,4:271-285.

[7]Choi M D.A Schwarz inequality for positive linear maps onC?-algebras[J].Illinois.J.Math.,1974,18:565-574.

[8]Ando T.Concavity of certain maps on postive de fi nite matrices and applications to hadamard products[J].Linear Alg.Appl.,1976,26:203-241.

[9]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities[J].J.Funct.Anal.,2006,231:221-244.

[10]Uchiyama M.A new majorization between functions,polynomials,and operator inequalities II[J].J.Math.Soc.Japan,2008,60:291-310.

[11]Uchiyama M.Operator inequalities:from a general theorem to concrete inequalities[J].Linear Alg.Appl.,2015,465:161-175.

[12]Yang C.Inequalities relating to means of positive operators[J].J.Math.,1996,16(4):467-474.

[13]Hensen F.An operator inequality[J].Math.Ann.,1980,246:249-250.

一些蘊(yùn)含F(xiàn)uruta不等式的算子單調(diào)函數(shù)的算子不等式

楊長(zhǎng)森,楊朝軍

(河南師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南新鄉(xiāng) 453007)

本文研究了算子不等式與算子單調(diào)函數(shù)之間的聯(lián)系.利用關(guān)于算子單調(diào)函數(shù)的乘積引理,乘積定理等基本控制原理,給出許多算子不等式,這些不等式可包含正算子理論中應(yīng)有十分廣泛的Furuta不等式.

算子單調(diào)函數(shù);積引理;積定理;控制

O177.1

on:47A62;47A63

A Article ID: 0255-7797(2017)04-0698-07

date:2015-09-21Accepted date:2015-12-11

Supported by National Natural Science Foundation of China(11271112;11201127)and Technology and the Innovation Team in Henan Province(14IRTSTHN023).

Biography:Yang Changsen(1965-),male,born at Xinxiang,Henan,professor,major in functional analysis.

主站蜘蛛池模板: 亚洲综合片| 精品三级网站| 亚洲人成电影在线播放| 成人免费午夜视频| 韩日免费小视频| 日韩无码视频播放| 国产呦视频免费视频在线观看| 国产免费怡红院视频| 精品国产三级在线观看| 欧美精品亚洲精品日韩专区| 亚洲无码电影| 国产精品污污在线观看网站| 国产麻豆另类AV| 国产精品一线天| 99久久精品久久久久久婷婷| 中文字幕日韩久久综合影院| 在线欧美a| 日本高清成本人视频一区| 成人精品在线观看| 国产精品久久久久鬼色| 亚国产欧美在线人成| 99视频在线精品免费观看6| 日韩一级二级三级| 黄色片中文字幕| 国产人碰人摸人爱免费视频| 色一情一乱一伦一区二区三区小说| 欧美成人手机在线观看网址| 72种姿势欧美久久久大黄蕉| 91精品免费高清在线| 亚洲手机在线| 色综合中文综合网| 亚洲欧美另类色图| 日韩大片免费观看视频播放| 国产免费精彩视频| 任我操在线视频| 婷婷中文在线| 久久久久久尹人网香蕉 | 精品成人免费自拍视频| 精品国产成人a在线观看| 青青青草国产| 日韩最新中文字幕| 在线人成精品免费视频| 久久伊人久久亚洲综合| 国产精品一线天| 日韩免费毛片| 毛片基地美国正在播放亚洲 | 亚洲av无码人妻| 她的性爱视频| 亚洲男人在线天堂| 国产中文一区a级毛片视频 | 成人在线视频一区| 日韩精品亚洲精品第一页| 亚洲狼网站狼狼鲁亚洲下载| 国内黄色精品| 免费高清毛片| 久久婷婷六月| 伊人精品成人久久综合| 亚洲无码A视频在线| 日韩精品欧美国产在线| 在线视频一区二区三区不卡| 国产精品片在线观看手机版| 女同久久精品国产99国| 国产免费精彩视频| 中文字幕人成乱码熟女免费| 香蕉99国内自产自拍视频| 99久久亚洲精品影院| 任我操在线视频| 色综合久久无码网| 五月婷婷综合在线视频| 色哟哟精品无码网站在线播放视频| 四虎亚洲精品| 日韩欧美在线观看| 欧美一级大片在线观看| 伊在人亚洲香蕉精品播放| 亚洲综合专区| 久久精品一卡日本电影| 国产00高中生在线播放| 欧美成人精品在线| 萌白酱国产一区二区| 国产高清无码第一十页在线观看| 思思热在线视频精品| 亚洲第一视频网|