陳雪瑩 姚 燁 周高適 陶詩婉 陳兆煜 談 智
(1.中山大學中山醫(yī)學院臨床醫(yī)學系,廣州 510080;2.中山大學附屬第三醫(yī)院神經(jīng)內(nèi)科,廣州 510630; 3. 中山大學中山醫(yī)學院高血壓研究所,廣州 510080;4. 中山大學中山醫(yī)學院生理教研室,廣州 510080)
?
· 基礎研究 ·
血管損傷反應對血管平滑肌合酶Ⅰ和轉錄釋放因子表達的影響及機制
陳雪瑩1姚 燁1周高適1陶詩婉1陳兆煜2談 智3,4*
(1.中山大學中山醫(yī)學院臨床醫(yī)學系,廣州 510080;2.中山大學附屬第三醫(yī)院神經(jīng)內(nèi)科,廣州 510630; 3. 中山大學中山醫(yī)學院高血壓研究所,廣州 510080;4. 中山大學中山醫(yī)學院生理教研室,廣州 510080)
目的 探討聚合酶Ⅰ和轉錄釋放因子(polymerase Ⅰ and transcript release factor,PTRF or Cavin-1)在損傷血管后血管再狹窄病理過程的作用及分子機制。方法 將200~220 g雄性Sprague Dawley大鼠采用數(shù)字表法隨機分為假手術組和血管損傷組,血管損傷組制備頸動脈損傷動物模型。用蘇木精伊紅染色顯示損傷后頸動脈的結構,免疫熒光、Western blotting檢測損傷后血管的Cavin-1蛋白表達,real-time RT-PCR方法檢測損傷后血管的Cavin-1 mRNA表達,免疫組織化學、Western blotting、免疫共沉淀法檢測頸動脈泛素化蛋白的表達。大鼠動脈平滑肌細胞實驗分為①空白對照組(control,CTRL);②CHX組:用放線菌酮(cycloheximide, CHX,25 μmol/L)預處理1 h;③CHX+MG組:用CHX預處理1 h后,接著用MG132(蛋白酶體抑制劑,10 μmol/L)處理24 h;④CHX+CQ組:用CHX預處理1 h后,接著用氯喹(chloroquin,CQ,10 μmol/L)處理24 h。應用Western blotting檢測細胞Cavin-1蛋白濃度。結果 動物模型中,球囊損傷后,血管壁明顯增厚,Cavin-1表達顯著下降(P<0.05),Cavin-1 mRNA表達差異不明顯,泛素化蛋白表達顯著上調(diào)(P<0.05)。細胞實驗中,應用CHX預處理可明顯降低平滑肌細胞Cavin-1的表達(P<0.05),而CHX+MG可以明顯對抗CHX上述作用過程(P<0.05)。結論 球囊損傷頸動脈后,血管的Cavin-1蛋白表達下調(diào),其機制可能與增加的泛素化-蛋白酶體降解途徑有關。
血管損傷;平滑肌細胞;泛素化;血管再狹窄
經(jīng)皮冠狀動脈介入治療(percutaneous coronary intervention,PCI)是目前治療急性心肌梗死病人的冠狀動脈再灌注的主要手段,但術后再狹窄嚴重影響PCI的遠期療效和病人預后[1]。血管再狹窄是一系列復雜的病理生理過程,其主要病因是PCI術程中支架植入及球囊膨脹擴張造成的血管損傷[2]。血管平滑肌細胞(smooth muscle cell,SMC)位于血管中膜,構成血管壁組織結構及維持血管張力的主要細胞成分,血管損傷后發(fā)生的增生、遷移及結構的改變是導致血管成形術后再狹窄等多種心血管病的細胞病理學基礎[3]。聚合酶Ⅰ和釋放因子(polymerase I and transcript release factor,PTRF or Cavin-1)是一種細胞表面微囊的結構相關蛋白[4],已有文獻表明其在癌細胞[5]和人成纖維細胞[6]的增生與遷移過程中發(fā)揮重要調(diào)控作用,Cavin-1的高表達能抑制細胞增生和遷移,但對SMC損傷后的增生和遷移的影響目前尚未有文獻報道。為此,本研究探索Cavin-1在損傷后血管內(nèi)膜增生的作用及可能的機制,為探討抑制損傷后血管再狹窄提供新的靶點和研究思路。
1.1 實驗材料
200~220 g雄性清潔級SD大鼠購于中山大學北校區(qū)動物實驗中心[許可證號:SCXK(粵)-2013-0002],采用數(shù)字表隨機分為假手術組、損傷組。DMEM培養(yǎng)基購于美國Hyclone公司。胎牛血清購于美國Gibco公司。Cavin-1抗體、MG132(蛋白酶體抑制劑)、放線菌酮(cycloheximide, CHX)、A/G plus-agarose、泛素抗體購于美國Santa公司。氯喹(chloroquin,CQ)購于美國ATCC公司。
1.2 頸動脈損傷動物模型的建立
200~220 g清潔級雄性SD大鼠經(jīng)10%(質(zhì)量分數(shù))水合氯醛0.3 mL/100 g腹腔注射麻醉后,逐層分離頸部皮膚、筋膜、肌肉,找到左頸總動脈,肝素100 U/kg抗凝,經(jīng)頸外動脈遠心端切口送入2F Forgety導管至頸總動脈,充分充盈球囊,向左右各轉動3次,損傷頸總動脈。逐層縫合筋膜、皮膚。術后注射青霉素80萬單位抗感染3 d。
1.3 SMC細胞培養(yǎng)與分組給藥
大鼠動脈平滑肌細胞來源于200~220 g SD大鼠主動脈原代培養(yǎng)獲得的SMC,培養(yǎng)于含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基,置于5%(體積分數(shù)) CO2、37 ℃ 的溫箱。
取成對數(shù)增生約第五代的SMC,接種于12孔培養(yǎng)板中,SMC生長至培養(yǎng)孔面積70%~80%時,實驗分為4組:①空白對照組(control,CTRL)用含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基培養(yǎng);②損傷模型組(以下簡稱CHX組)用25μmol/L CHX+含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基處理1 h;③CHX+MG組用25μmol/L CHX+含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基預處理1 h后,接著10 μmol/L MG 132+含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基處理24 h;④CHX+CQ組:用25μmol/L放線菌酮(CHX)+含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基預處理1 h后,用50 μmol/L CQ+含10%(體積分數(shù))胎牛血清的DMEM培養(yǎng)基處理24 h。
1.4 蘇木素伊紅染色顯示頸動脈結構
根據(jù)文獻[7]動物模型方法,球囊損傷后14 d為最佳觀察血管內(nèi)膜增生的時間。球囊損傷14 d后,將假手術組和球囊損傷組大鼠處死,取頸總動脈分叉處下0.5 cm處血管,在血管分離時注意保護血管的完整性,不過多清除血管外膜周圍結締組織,制作石蠟切片,進行蘇木素伊紅(hematoxylin and eosin staining,HE)染色。
1.5 免疫熒光染色法檢測頸動脈Cavin-1表達
球囊損傷14 d后,將假手術組和球囊損傷組大鼠處死,取頸動脈制作石蠟切片,用Cavin-1特異性抗體進行染色,加入熒光工作液,容量以覆蓋細胞為準。37 ℃孵育30 min。用PBS溶液洗滌細胞3次,以充分去除殘留的工作液,然后加入熒光激發(fā)溶液覆蓋細胞,用熒光倒置顯微鏡觀察,并隨機選取5個不重復區(qū)域采集圖像。實驗重復5次。
1.6 real-time RT-PCR檢測頸動脈Cavin-1 mRNA
球囊損傷14 d后,將假手術組和球囊損傷組大鼠處死,取頸動脈,超聲粉碎組織塊,real-time RT-PCR法檢測組織塊Cavin-1 mRNA。
1.7 免疫組織化學染色法檢測頸動脈泛素化蛋白的表達
球囊損傷14 d后,將假手術組和球囊損傷組大鼠處死,取頸動脈制作石蠟切片,進行Cavin-1免疫組織化學染色,染色完成后用光學倒置顯微鏡觀察,并隨機選取5個不重復區(qū)域采集圖像。實驗重復5次。
1.8 Western blotting法檢測頸動脈Cavin-1、泛素化蛋白表達及SMC的Cavin-1蛋白表達
將建模完成的頸動脈組織塊在相同部位稱取相同質(zhì)量的組織塊,加入裂解液。SMC接種于12孔培養(yǎng)板中,培養(yǎng)至70%~80%滿時,各組給予不同的處理因素,然后用預冷的PBS洗2次,加入裂解液。接著,都在4 ℃靜置30 min,12 000 r/min離心10 min,取上清,采用BCA法進行蛋白定量。總蛋白經(jīng)SDS-PAGE分離后,轉移到PVDF膜上。用5%(質(zhì)量分數(shù))脫脂牛奶封閉60 min,隨后加入一抗體4 ℃過夜,用TBST洗3遍,每遍10 min。將PVDF膜用發(fā)光試劑ECL顯色,將圖片以Tif格式保存并分析結果。按照以上步驟檢測Cavin-1、泛素化蛋白的表達。利用Image-Pro plus 6.0圖像分析軟件檢測蛋白灰度值與β-actin灰度值的比值表示目的蛋白的表達水平。
1.9 免疫共沉淀
免疫共沉淀的具體方法參見文獻[8]。簡而言之,從動物模型取得血管樣品,提取出200 μg與1 μg的泛素抗體4 ℃孵育過夜。然后加入20 μL的A/G plus-agarose繼續(xù)孵育4 h。然后1 000 g 4 ℃離心5 min,棄上清液。使用PBS清洗,離心3次。取得的樣品加入40 μ L的電泳樣品緩沖液,煮沸3 min,800 g 4 ℃離心5 min,取20 μL進行電泳,余下步驟同Western blotting。
1.10 統(tǒng)計學方法
2.1 血管形態(tài)學分析
術后14 d,頸總動脈目的區(qū)域HE染色(圖1)顯示,假手術組僅見單層內(nèi)皮細胞,無增生的內(nèi)膜。損傷組切片可見內(nèi)膜連續(xù)性中斷,內(nèi)彈力膜斷裂破壞,大量平滑肌細胞增生,內(nèi)膜增厚。

圖1 14 d后假手術組與球囊損傷組的頸動脈HE染色結果
A:monolayer endothelial cells without neointima in the sham groups; B: intima lining interruption, elastic membrane damage, smooth muscle cells proliferation and intimal thickening in injury groups.
2.2 球囊損傷后,頸動脈Cavin-1的表達下調(diào)
免疫熒光染色顯示綠色的區(qū)域為Cavin-1表達陽性區(qū)域,亮度與Cavin-1表達量成正相關。術后14 d,頸動脈免疫熒光染色結果顯示:損傷組頸動脈的Cavin-1表達區(qū)域更大,也表達于增厚的內(nèi)膜區(qū)域,但單個細胞表達量低于假手術組(圖2A)。為進一步量化SMC的Cavin-1表達,術后14 d,頸動脈組織Western blotting結果(圖2B)顯示:損傷組頸動脈的Cavin-1表達水平低于假手術組,差異有統(tǒng)計學意義(n=7,P<0.05)。
2.3 球囊損傷后,頸動脈Cavin-1 mRNA水平
術后14 d,用real-time RT-PCR檢測假手術組與損傷組的頸動脈Cavin-1 mRNA水平(圖3),2組差異無統(tǒng)計學意義(n=7,P>0.05)
2.4 球囊損傷后,頸動脈泛素化蛋白表達上調(diào)
被染成棕黃色區(qū)域顯示為泛素化蛋白陽性表達區(qū)域,顏色深度與泛素化蛋白表達量成正相關。術后14 d,頸動脈免疫組織化學染色結果顯示損傷組頸動脈的表達量上調(diào),高于假手術組,詳見圖4A。為進一步量化泛素化蛋白表達量,頸動脈組織Western blotting結果顯示損傷組頸動脈的泛素化蛋白表達水平高于假手術組,差異有統(tǒng)計學意義(n=7,P<0.05)詳見圖4B。免疫共沉淀(Co-immunoprecipitation,Co-IP)顯示Cavin-1通過泛素化途徑進行降解(圖4C)。

圖2 Cavin-1表達的檢測
A: Immunofluorescent staining showed that Cavin-1 expression from sham mainly exists in intima and larger range and lower percell level Cavin-1 expression from injury groups; B: Western blotting showed that Cavin-1 expression is much lower in injury groups compared with sham groups, which was significantly reduced by the balloon injury.n=7,*P<0.05vssham group; Cavin-1:polymerase Ⅰ and transcript release factor.
2.5 上調(diào)的泛素化-蛋白酶體途徑使SMC的Cavin-1表達下調(diào)
大鼠主動脈SMC的Western blotting結果顯示:與對照組相比,經(jīng)25μmol/L CHX預處理1 h的SMC顯著下調(diào)了Cavin-1的表達(P<0.05)。MG-132是蛋白酶體抑制劑,經(jīng)25μmol/L CHX預處理1 h的SMC再用10μmol/L MG 132處理24 h,Cavin-1表達量高于CHX組,差異具有統(tǒng)計學意義(P<0.05)。CQ是溶酶體抑制劑,經(jīng)25μmol/L CHX預處理1 h的SMC再用50 μmol/L CQ處理24 h,Cavin-1表達量與CHX組相比差異無統(tǒng)計學意義(P>0.05)(圖5)。細胞實驗提示SMC的Cavin-1表達量下調(diào)主要是通過調(diào)節(jié)蛋白酶體活性來上調(diào)泛素化降解途徑來實現(xiàn)的。

圖3 假手術組與球囊損傷組的頸動脈
Cavin-1:polymerase Ⅰ and transcript release factor.
3.1 Cavin-1參與了損傷后血管再狹窄的過程
PCI治療后血管再狹窄是當今臨床治療急性冠脈綜合征的難題之一。目前認為血管平滑肌細胞增生及向內(nèi)膜下遷移是血管再狹窄的主要因素,血管損傷后,炎性反應因子等刺激血管平滑肌細胞從收縮表型向合成表型轉換,進入增生分泌旺盛階段,向內(nèi)膜遷移,在內(nèi)膜增生[9]并合成分泌細胞外基質(zhì),參與內(nèi)膜增厚、血管重塑病理過程[10]。大鼠頸動脈經(jīng)球囊損傷后,血管壁明顯厚于假手術組,管腔明顯小于假手術組,模擬了臨床中PCI術后再狹窄的現(xiàn)象。從HE染色可以看出,內(nèi)彈力層破壞,平滑肌細胞增生,內(nèi)膜增厚,SMC在血管壁中的增生、遷移中起到很重要的作用。目前關于Cavin-1的研究方向主要為細胞衰老、凋亡、腫瘤及物質(zhì)轉運等,尚未報道Cavin-1在心血管領域病理生理機制中的研究[11]。上述實驗主要顯示,Cavin-1參與了損傷后血管再狹窄的過程。且免疫熒光染色、Western blotting結果顯示,Cavin-1在損傷后的血管中表達量顯著下調(diào),這提示Cavin-1可能是血管保護因子。

圖4 頸動脈泛素化蛋白表達檢測
A: Immunochemical staining of ubiquitinated protein in carotid artery from injury groups was higher than sham groups (400×).B: Western blotting revealed that ubiquitinated protein levels were higher in the injured carotid compared with sham group. C: Co-immunoprecipitation showed that Cavin-1 could be degraded by proteasomal pathway.n=7,*P<0.05vssham group; Cavin-1:polymerase Ⅰ and transcript release factor.

圖5 上調(diào)的泛素化-蛋白酶體途徑使SMC的Cavin-1表達下調(diào)
Rat aortic SMC were pretreated with CHX (25μmol/L) or not for 1 h, followed by treatment with proteasomal inhibitor MG 132(10 μmol/L)or lysosomal inhibitor CQ (50 μmol/L)for additional 24 h. Western blotting confirmed Cavin-1 protein degradation mainly through proteasomal pathway.n=5,*P<0.05vsCTRL;#P<0.05vsCHX or CHX+CQ; SMC:smooth muscle cell; CTRL:control; CHX:cycloheximide; MG:MG 132; CQ:chloroquin; Cavin-1:polymerase Ⅰ and transcript release factor.
3.2 Cavin-1參與損傷后血管再狹窄的可能機制
本研究顯示,血管損傷后,Cavin-1表達量下調(diào),與假手術組相比差異具有統(tǒng)計學意義。Cavin-1表達量的下調(diào),筆者猜測可能通過目前已知的可能的機制來實現(xiàn),包括Cavin-1基因轉錄、翻譯、蛋白結構修飾、蛋白降解等一系列復雜的過程。但本實驗real-time RT-PCR顯示,Cavin-1在mRNA的水平差異無統(tǒng)計學意義,這說明Cavin-1量的下調(diào)并不是通過調(diào)節(jié)轉錄過程來實現(xiàn)的,而可能是通過轉錄后途徑來調(diào)節(jié)的。頸動脈組織經(jīng)免疫共沉淀后結果顯示,Cavin-1可被泛素化降解,為進一步明確,需要細胞實驗從細胞水平來證實。細胞實驗中,CHX是真核生物蛋白合成抑制劑[12],進而用CQ抑制細胞溶酶體活性,不能上調(diào)Cavin-1表達量,但用MG抑制蛋白酶體活性,SMC的Cavin-1表達上調(diào),說明CHX引起的SMC中Cavin-1表達量下調(diào),并不是通過調(diào)節(jié)溶酶體降解途徑,而主要是通過蛋白酶體-泛素化途徑實現(xiàn)的。Cavin-1表達量在合成與降解達到動態(tài)平衡,SMC細胞實驗進一步證實了泛素化-蛋白酶體途徑是Cavin-1表達量下調(diào)的主要原因,而不是溶酶體降解途徑。泛素化-蛋白酶體途徑不僅能降解增生相關基因[13]及蛋白包括細胞周期蛋白[14],還能降解炎性反應相關因子如核因子kappa B[15],此外還能降解凋亡相關分子如p53[16]。近年文獻[17]指出,作為真核細胞內(nèi)蛋白降解的三大途徑之一,泛素化-蛋白酶體途徑也能通過抗增生、抗炎、抗凋亡抑制血管再狹窄。本實驗所有細胞模型說明Cavin-1可發(fā)生泛素化降解,損傷后血管再狹窄與Cavin-1經(jīng)泛素化途徑降解有關,但是本文觀察到血管重構中有Cavin-1下調(diào)及泛素化水平上升,并不能說明Cavin-1泛素化降解參與血管重構,還需進一步實驗驗證其在血管再狹窄的病理生理機制的作用。
3.3 結論
血管平滑肌細胞在血管損傷的病理生理變化中發(fā)揮重要作用。目前Cavin-1對細胞的遷移和增生的影響主要針對癌細胞,對血管損傷后血管平滑肌細(vascular smooth muscle cells, VSMCs)的Cavin-1的表達以及Cavin-1在血管損傷后對VSMCs遷移和增生的影響尚未見報道。本文報道了在血管重構過程中,Cavin-1和泛素化水平的變化以及血管泛素化水平可以影響Cavin-1水平的這種現(xiàn)象。雖Cavin-1參與損傷后血管再狹窄已經(jīng)有實驗證據(jù)支持,其機制可能與泛素化-蛋白酶體途徑降解有關,但至于Cavin-1表達量的變化是不是引起血管損傷后的再狹窄的原因或結果需要后續(xù)研究來證明,從而為研究與治療臨床PCI術后血管再狹窄提供理論依據(jù)。
總之,血管重構的病理生理過程中,Cavin-1表達下調(diào)和泛素化水平上調(diào),且血管泛素化水平可以影響Cavin-1水平,可為研究血管損傷后血管再狹窄提供新的方向。
[1] Raina T, Iqbal J, Arnold N, et al.Coronary stents seeded with human trophoblastic endovascular progenitor cells show accelerated strut coverage without excessive neointimal proliferation in a porcine model[J]. EuroIntervention,2014,10(6):709-716.
[2] Han X J, He D, Xu L J, et al. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells[J]. Int J Mol Med,2015,36(5):1361-1368.
[3] Zuniga M C, White S L, Zhou W. Design and utilization of macrophage and vascular smooth muscle cell co-culture systems in atherosclerotic cardiovascular disease investigation[J]. Vasc Med,2014,19(5):394-406.
[4] Codenotti S, Vezzoli M, Poliani P L, et al. Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma[J]. Eur J Cell Biol,2016, 95 (8): 252-264.
[5] Meng F, Joshi B, Nabi I R. Galectin-3 overrides PTRF/Cavin-1 reduction of PC3 prostate cancer cell migration[J]. PLoS One,2015,10(5):e126056.
[6] Salle-Teyssieres L, Auclair M, Terro F, et al. Maladaptative autophagy impairs adipose function in Congenital Generalized Lipodystrophy due to cavin-1 deficiency[J]. J Clin Endocrinol Metab,2016,101 (7): 2892-2904.
[7] Yang J, Fan Z, Yang J, et al. MicroRNA-24 attenuates neointimal hyperplasia in the diabetic rat carotid artery injury model by inhibiting Wnt4 signaling pathway[J]. Int J Mol Sci,2016, 17(6):765.
[8] Tan Z, Zhou L J, Mu P W, et al. Caveolin-3 is involved in the protection of resveratrol against high-fat diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats[J]. J Nutr Biochem, 2012,23(12):1716-1724.
[9] Sun L, Zhao R, Zhang L, et al. Prevention of vascular smooth muscle cell proliferation and injury-induced neointimal hyperplasia by CREB-mediated p21 induction: an insight from a plant polyphenol[J]. Biochem Pharmacol,2016,103:40-52.
[10]Borges B E, Appel M H, Cofre A R, et al. The flavo-oxidase QSOX1 supports vascular smooth muscle cell migration and proliferation: evidence for a role in neointima growth[J]. Biochim Biophys Acta,2015,1852(7):1334-1346.
[11] Low J Y, Nicholson H D. Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease[J]. Cell Tissue Res,2014,357(3):505-513.
[12]Tan X, Gao J, Shi Z, et al. MG132 induces expression of monocyte chemotactic protein-induced protein 1 in vascular smooth muscle cells[J]. J Cell Physiol, 2017,232(1):122-128.
[13]Keller K E, Wirtz M K. Working your SOCS off: the role of ASB10 and protein degradation pathways in glaucoma[J]. Exp Eye Res,2017,158:154-160.
[14]Gwak H, Kim Y, An H, et al. Metformin induces degradation of cyclin D1 via AMPK/GSK3beta axis in ovarian cancer[J]. Mol Carcinog,2016,56(2):349-358.
[15] Shukla S, Shankar E, Fu P, et al. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by apigenin through IκBα and IKK pathway in TRAMP mice[J]. PLoS One,2015,10(9):e138710.
[16]Gao K, Wang C, Jin X, et al. RNF12 promotes p53-dependent cell growth suppression and apoptosis by targeting MDM2 for destruction[J]. Cancer Lett,2016,375(1):133-141.
[17]Meiners S, Laule M, Rother W, et al. Ubiquitin-proteasome pathway as a new target for the prevention of restenosis[J]. Circulation,2002,105(4):483-489.
編輯 孫超淵
Effect of vascular injury on the expression of polymerase Ⅰ and transcript release factor in vascular smooth muscle and its mechanism
Chen Xueying1,Yao Ye1, Zhou Gaoshi1,Tao Shiwan1,Chen Zhaoyu2,Tan Zhi3,4*
(1.DepartmentofClinicalMedicine,ZhongshanSchoolofMedicine,SunYat-senUniversity,Guangzhou510080,China; 2.DepartmentofNeurology,The3rdAffiliatedHospitalofSunYat-SenUniversity,Guangzhou510630,China; 3.InstituteofHypertension,ZhongshanSchoolofMedicine,SunYat-senUniversity,Guangzhou510080,China; 4.DepartmentofPhysiology,ZhongshanSchoolofMedicine,SunYat-senUniversity,Guangzhou510080,China)
Objective To investigate the role of polymerase Ⅰ and transcript release factor or Cavin-1 in vascular restenosis after vascular injury and its molecular mechanism. Methods 200-220 g Sprague Dawley(SD)male rats were randomly divided into sham and injury groups with injury groups establishing balloon injury models. Cellular content from carotid taken after the sham and balloon injuries were shown by hematoxylin and eosin staining. Expression Cavin-1 protein from above groups were determined by Western blotting and immunofluorescence. The Cavin-1 mRNA from above groups was detected by real-time RT-PCR, respectively. Immunochemical staining, Western blotting and Co-immunoprecipitation revealed ubiquitinated protein in carotid artery from sham and injury groups. Rat aortic smooth muscle cells were divided into: ①control group(CTRL);②CHX group rats were pretreated with cycloheximide (CHX, 25μmol/L) for 1 h;③CHX+MG group rats were pretreated with CHX (25μmol/L) for 1 h followed by treatment with MG 132(10 μmol/L)for additional 24 hours.④CHX+CQ group rats were pretreated with CHX (25μmol/L) for 1 h followed by treatment with chloroquin(CQ,50 μmol/L)for additional 24 hours.Expression Cavin-1 protein from above groups were determined by Western blotting. Results As for animal models, the carotid vascular wall became thicker after the balloon injury and the expression of Cavin-1 protein was significantly decreased(P<0.05) while real-time RT-PCR showed no significant difference of Cavin-1 mRNA between sham and injury groups. Ubiquitinated protein levels were higher in the injured carotid compared with sham group(P<0.05) As for cell experiment, expression of Cavin-1 was decreased significantly from CHX group compared with CTRL(P<0.05).CHX+MG group can reverse the above effects (P<0.05). Conclusion Expression of Cavin-1 protein from balloon injury carotid arteries were reduced, and its mechanism may relate to up-regulated ubiquitination degradation pathway.
vascular injury;smooth muscle cell;ubiquitination;vascular restenosis
國家自然科學基金(81270377),廣東省科技廳社會發(fā)展領域項目(2015A020212020),廣東省自然科學基金項目(2014A030313062)。This study was supported by National Natural Science Foundation of China (81270377), Science and Technology Department of Guangdong (2015A020212020), Natural Science Foundation of Guangdong (2014A030313062).
時間:2017-07-16 17∶24 網(wǎng)絡出版地址:http://kns.cnki.net/kcms/detail/11.3662.r.20170716.1724.038.html
10.3969/j.issn.1006-7795.2017.04.012]
R54
2016-11-21)
*Corresponding author, E-mail:tanzhi@mail.sysu.edu.cn