孫倩+曾誠++段薇娜++孟慶濤++夏中元



[摘要] 目的 探討血管緊張素-(1-7)/血管緊張素-Ⅱ[Ang-(1-7)/Ang-Ⅱ]調節NF-E2-related factor-2(Nrf2)/血紅素氧合酶1(HO-1)通路在糖尿病腎臟缺血再灌注損傷中的作用及機制。 方法 60只成年雄性SD大鼠隨機分為正常假手術組(Sham組)、正常缺血再灌注組(IR組)、糖尿病假手術組(DS組)、糖尿病缺血再灌注組(DIR組),每組各15只。檢測血尿素氮(BUN)、肌酐(Cr)和中性粒細胞明膠酶相關載脂蛋白(NGAL),觀察腎臟病理學改變,檢測腎組織超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量,Western blot檢測Ang-(1-7)和Ang-Ⅱ蛋白以及Nrf2和HO-1蛋白表達。 結果 Ang-(1-7)蛋白在DS組中表達較Sham組增加(P < 0.05),在IR組中表達較Sham組減少(P < 0.05),而在DIR組中較IR組進一步減少(P < 0.05)。IR組和DS組中Ang-Ⅱ蛋白表達顯著高于Sham組(P < 0.05),而DIR組中Ang-Ⅱ蛋白表達進一步增高(P < 0.05)。IR組和DS組中Nrf2和HO-1蛋白表達顯著高于Sham組(P < 0.05),而DIR組中Nrf2和HO-1蛋白表達較IR組和DS組降低(P < 0.05)。與Sham組比較,IR組和DS組中腎臟損傷程度顯著增高(P < 0.05),血清BUN、Cr和NGAL水平、腎臟組織MDA含量明顯升高而SOD活性顯著降低(P < 0.05)。與IR組和DS組比較,DIR組中腎臟損傷程度進一步增高(P < 0.05),血清BUN、Cr和NGAL水平、腎臟組織MDA含量明顯增高,而SOD活性明顯降低(P < 0.05)。 結論 缺血再灌注可能通過抑制Ang-(1-7),激活Ang-Ⅱ,下調Nrf2/HO-1通路的抗氧化應激能力,加重了糖尿病腎臟的損傷。
[關鍵詞] 血管緊張素-(1-7);血管緊張素-Ⅱ;NF-E2-related factor-2;糖尿?。荒I臟缺血再灌注損傷
[中圖分類號] R692.9 [文獻標識碼] A [文章編號] 1673-7210(2017)07(b)-0012-05
Role of angiotensin-(1-7)/angiotensin-Ⅱin kidney ischemia-reperfusion injury by regulating Nrf2/HO-1 pathway in diabetic rats
SUN Qian ZENG Cheng DUAN Weina MENG Qingtao XIA Zhongyuan
Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430061, China
[Abstract] Objective To investigate the role of angiotensin-(1-7)/angiotensin-Ⅱ[Ang-(1-7)/Ang-Ⅱ] in kidney ischemia-reperfusion injury by regulating NF-E2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in diabetic rats. Methods Sixty male SD rats were randomly divided into four groups: Sham group, kidney ischemia-reperfusion group (IR group), diabetic group (DS group), diabetic+KIR group (DIR group), with 15 rats in each group. Kidney ischemia reperfusion model of STZ-diabetic rat model was used. After 24h reperfusion, blood urea nitrogen (BUN), creatinine (Cr), and neutrophil gelatinase-associated lipocalin (NGAL) levels in serum were measured. Renal histology was observed and evaluated. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels in renal tissues were detected. Western blot were used to observe the expression levels of Ang-(1-7), Ang-Ⅱ and Nrf2, HO-1 in renal tissues. Results Expressions of Ang-(1-7) in DS group were higher than those in sham group (P < 0.05), the expressions of Ang-(1-7) in IR group were lower than those in sham group (P < 0.05), the expressions of Ang-(1-7) in DIR group were much lower than those in IR group (P < 0.05). The expressions of Ang-Ⅱ in IR and DS group were higher than those in Sham group (P < 0.05), the expressions of Ang-Ⅱ in DIR group were higher than those in IR and DS group (P < 0.05). The expressions of Nrf2 and HO-1 in IR and DS group were higher than those in sham group (P < 0.05), the expressions of Nrf2 and HO-1 in DIR group were lower than those in IR and DS group (P < 0.05). Compare with Sham group, BUN, Cr and NGAL in serum and MDA levels in the renal tissues were increased, and SOD levels were decreased in IR and DS group (P < 0.05). Compare with IR and DS group, BUN, Cr and NGAL in serum and MDA levels in the renal tissues were further increased (P < 0.05), and SOD levels were further decreased in DIR group (P < 0.05). Conclusion Ischemia reperfusion might inhibit the Ang-(1-7), activate the Ang-Ⅱ and down regulate the anti-oxidative stress of Nrf2/HO-1 pathway, resulting in the damage of diabetic kidney.
[Key words] Angiotensin-(1-7); Angiotensin-Ⅱ; NF-E2-related factor-2; Diabetic; Kidney ischemia-reperfusion injury
糖尿病腎?。―N)是威脅糖尿病患者生命的重要原因,腎臟缺血再灌注損傷可發生在腎移植、復雜腎臟手術和休克復蘇過程中[1]。然而,糖尿病腎臟缺血再灌注損傷的分子機制尚不明確。近年來研究表明NF-E2-related factor-2(Nrf2)/血紅素氧合酶1(HO-1)通路作為內源性抗氧化應激通路,在糖尿病及其腎臟損傷中起著重要的作用[2-3]。進一步研究表明,低濃度血管緊張素-Ⅱ(Ang-Ⅱ)激活Nrf2/ARE通路,高濃度Ang-Ⅱ對Nrf2/ARE通路起到抑制作用[4]。血管緊張素-(1-7)[Ang-(1-7)]對Ang-Ⅱ發揮負性調控作用,被認為是內源性的Ang-Ⅱ阻斷劑[5]。因此,本課題旨在研究Ang-(1-7)/Ang-Ⅱ通過調節Nrf2/ARE通路在糖尿病腎臟缺血再灌注損傷中的作用機制。
1 材料與方法
1.1 試劑和材料
成年雄性SD大鼠,SPF級,9~12周(北京維通利華實驗動物技術有限公司,合格證號:11400700202769),鏈脲佐菌素(STZ,sigma公司),Ang-(1-7)和Ang-Ⅱ蛋白以及Nrf2和HO-1蛋白抗體(Cell Signal公司),中性粒細胞明膠酶相關脂質運載蛋白(NGAL)酶聯免疫試劑盒(武漢博士德生物技術公司),丙二醛(MDA)及超氧化物歧化酶(SOD)試劑盒(南京建成生物技術公司),BX50及AU5400(Olympus Optica,日本)。
1.2 實驗動物及分組
SD大鼠,實驗前禁食12 h,自由飲水。所有大鼠隨機分為4組,每組各15只:正常假手術組(Sham組),腎臟缺血再灌注組(IR組),糖尿病正常組(DS組),糖尿病腎臟缺血再灌注組(DIR組)。
1.3 動物模型的建立
1.3.1 糖尿病模型的建立[6] 成年雄性9~12周SD大鼠,氟烷麻醉下尾靜脈注射STZ(40~60 mg/kg),72 h后當血糖濃度>16.7 mmol/L時表示糖尿病鼠模型成功。所有實驗在成模4周后開始,實驗期間每周監測血糖水平1次。
1.3.2 腎臟缺血再灌注模型的建立[7] 術前禁食8~12 h,腹腔注射三溴乙醇(200 mg/kg)麻醉后,沿腹中線切口,逐層分離皮膚、腹膜,進入腹腔,將腸道推向一側,找到腎蒂后用無損傷微型動脈夾迅速阻斷左右腎蒂,30 min后去除動脈夾,分層縫合關閉腹腔。術后大鼠于24~29℃的環境保暖,補充水與飼料,再灌注24 h。Sham組:同法打開腹腔并找到腎蒂,但不夾閉腎蒂。
1.3.3 模型成功與否判定 造模成功:術中夾閉雙側腎蒂后,可見腎臟由鮮紅變紫黑色,去除動脈夾,恢復血流灌注,可見腎臟迅速由紫黑色變為鮮紅,恢復原來顏色;并且術后1~3 h,可見大鼠蘇醒,逐漸恢復正?;顒?。造模不成功:腎臟恢復血流后5 min,腎臟未恢復正常顏色;或術中損傷周圍組織或器官;或術后1~3 h,大鼠未蘇醒或死亡。
1.4 取材及指標測定
1.4.1 腎組織病理學檢測 左腎固定包埋后,用蘇木精伊紅染色。在BX50光學顯微鏡下觀察各組腎組織。利用McWhinnie 等[8]方法對腎小管壞死進行半定量病理學評分。每個腎臟標本累計100個交叉處的剖面腎小管損傷總分,最高為300分。
1.4.2 血清尿素氮(BUN)、肌酐(Cr)和NGAL檢測 左心采血1 mL,4℃ 3500 r/min離心15 min,取上清,運用AU5400自動分析儀檢測BUN和Cr水平。采用酶聯免疫吸附法(ELISA)測定血清NGAL濃度,具體操作步驟參照試劑盒說明書。
1.4.3 腎臟組織SOD和MDA檢測 取50 mg腎臟組織,加入0.9 mL NS制成10%的組織勻漿。采用硫代巴比妥酸法測定MDA含量,鄰苯三酚法測定SOD活性。
1.4.4 腎臟Ang-(1-7)和Ang-Ⅱ蛋白以及Nrf2和HO-1蛋白 Western blot分析,組織樣品用BCA法測蛋白濃度。BandScan分析膠片灰度值進行半定量分析。
1.5 統計學方法
采用統計軟件Graphpad Prism 5對數據進行分析,正態分布計量資料以均數±標準差(x±s)表示多組間比較采用方差(ANOVA)分析,兩兩比較采用LSD-t檢驗。計數資料以率表示,采用χ2檢驗。以P < 0.05為差異有統計學意義。
2 結果
2.1 腎臟組織病理學變化
IR組與DS組的腎小管出現病理損傷,包括水腫、壞死和空泡化。而DIR組腎小管水腫、壞死和空泡化損傷現象進一步加重。見圖1。與Sham組[(19.30±5.12)分]比較,IR組[(192.47±11.74)分]和DS組[(183.24±8.28)分]病理損傷評分顯著增高,差異均有統計學意義(P < 0.05);與IR組和DS組比較,DIR組[(242.77±6.35)分]病理學評分進一步增高,差異有統計學意義(P < 0.05)。
2.2 各組血清BUN、Cr和NAGL含量的變化
與Sham組比較,IR組與DS組再灌注后血清BUN、Cr和NAGL含量顯著升高,差異均有統計學意義(P < 0.05)。與IR組和DS組比較,DIR組中血清BUN、Cr和NAGL進一步升高,差異均有統計學意義(P < 0.05)。見表1。
表1 血清BUN、Cr和NAGL含量變化(n=15,x±s)
注:與Sham組比較,*P < 0.05;與DS組比較,#P < 0.05;BUN:尿素氮;Cr:肌酐;NGAL:中性粒細胞明膠酶相關載脂蛋白
2.3 各組腎臟組織SOD和MDA含量變化
與Sham組比較,IR組與DS組SOD活性顯著降低,而MDA含量明顯升高,差異均有統計學意義(P < 0.05)。較之于IR組,DIR組則進一步降低SOD活性并升高MDA的含量,差異均有統計學意義(P < 0.05)。見表2。
表2 腎臟組織SOD和MDA含量(n=15,x±s)
注:與Sham組比較,*P < 0.05;與DS組比較,#P < 0.05;SOD:超氧化物歧化酶;MDA:丙二醛
2.4 腎臟組織中Ang-(1-7)和Ang-Ⅱ蛋白以及Nrf2和HO-1蛋白表達
Ang-(1-7)蛋白在DS組中表達較Sham組增加,在IR組中表達較Sham組減少,而在DIR組中較IR組進一步減少,差異均有統計學意義(P < 0.05)。IR組和DS組中Ang-Ⅱ蛋白表達顯著高于Sham組,而DIR組中Ang-Ⅱ蛋白表達進一步增高,差異均有統計學意義(P < 0.05)。IR組和DS組中Nrf2和HO-1蛋白表達顯著高于Sham組,而DIR組中Nrf2和HO-1蛋白表達較IR組和DS組降低,差異均有統計學意義(P < 0.05)。見圖2、表3。
圖2 腎臟組織Ang-(1-7)和Ang-Ⅱ蛋白以及Nrf2和HO-1蛋白表達
表3 腎臟組織Ang-(1-7)和Ang-Ⅱ蛋白以及Nrf2和HO-1蛋白表達變化(n=8,x±s)
注:與Sham組比較,*P < 0.05;與DS組比較,#P < 0.05;Ang-(1-7):血管緊張素-(1-7);Ang-Ⅱ:血管緊張素-Ⅱ;Nrf2:NF-E2-related factor-2;HO-1:血紅素氧合酶1
3 討論
糖尿病機體組織存在活性氧負荷增加和腎素-血管緊張素-醛固酮系統(RAAS)激活等病理生理改變,加重腎臟缺血再灌注損傷[9-12]。Ang-Ⅱ是RAAS系統中具有代表性的活性肽,可導致氧化應激損傷、血管重構、炎性反應和內皮損傷[13-14]。近年來大量研究證實Ang-(1-7)在心血管血流動力學、壓力反射調節和血管內皮功能等生物學活性上與Ang-Ⅱ相拮抗,并通過其受體(Mas)發揮血管擴張、抗氧化應激、抗炎和抗增殖等作用,對心血管系統和腎臟功能都具有保護作用[15-17],并可減弱由高血糖所致的活性氧的升高[18]。
Nrf2/ARE通路在內源性細胞抗氧化防御體系中起著非常重要的作用。當機體受到外界氧化應激刺激時,Nrf2與Keap1解離,進入細胞核與ARE結合,啟動下游抗氧化基因的表達,從而清除過多氧自由基[19]。本課題組前期研究表明Nrf2/ARE通路在糖尿病及腎臟損傷過程中起到重要的保護作用[20-21]。與此同時,有研究證實Ang-Ⅱ和Ang-(1-7)誘導細胞氧化應激后激活了Nrf2/ARE通路,但是它的激活作用有時間和刺激濃度限制[22]。
本研究發現Ang-(1-7),Ang-Ⅱ蛋白和Nrf2、HO-1蛋白在DS組中表達較Sham組均增加,而SOD酶活性降低,MDA含量增多。結果表明在糖尿病早期Ang-(1-7)蛋白被激活以控制過量的Ang-Ⅱ,體內的Ang-(1-7)蛋白及少量的Ang-Ⅱ雖可激活Nrf2/ARE通路,發揮抗氧化應激的作用,但是其激活的HO-1及SOD酶不足以對抗高糖產生的致損傷作用,故仍然表現為腎臟組織損傷程度顯著,BUN、Cr和NAGL含量以及MDA含量較Sham組顯著增高。在DIR組蛋白Ang-Ⅱ較DS組進一步增高,而Ang-(1-7)、Nrf2和HO-1蛋白較DS組表達均明顯降低,同時SOD酶活性進一步降低,MDA含量進一步增多,表明缺血再灌注抑制了Ang-(1-7)蛋白,導致高濃度的Ang-Ⅱ下調了Nrf2的表達,從而加重了糖尿病腎臟的損傷,其損傷可能與缺血再灌注產生大量氧自由基,遠遠超出了抗氧化防御體系的清除能力相關。
綜上所述,本研究證實在糖尿病中早期Ang-(1-7)蛋白被激活以控制過量的Ang-Ⅱ,體內的Ang-(1-7)蛋白及少量的Ang-Ⅱ可激活Nrf2/ARE通路發揮抗氧化應激的作用;而缺血再灌注抑制了Ang-(1-7) 蛋白,導致高濃度的Ang-Ⅱ下調了Nrf2 的表達,從而加重了糖尿病腎臟的損傷。本研究提示Ang-(1-7)可能成為為今后治療糖尿病腎臟缺血再灌注損傷的作用靶點。
[參考文獻]
[1] Muthaian R,Pakirisamy RM,Parasuraman S,et al. Hypertension influences the exponential progression of inflammation and oxidative stress in streptozotocin-induced diabetic kidney [J]. J Pharmacol Pharmacother,2016,7(4):159-164.
[2] Tonneijck L,Muskiet MH,Smits MM,et al. Glomerular hyperfiltration in diabetes:mechanisms,clinical significance,and treatment [J]. J Am Soc Nephrol,2017,28(4):1023-1039.
[3] Gazaryan IG,Thomas B. The status of Nrf2-based therapeutics:current perspectives and future prospects [J]. Neural Regen Res,2016,11(11):1708-1711.
[4] Zhou T,Zhang M,Zhao L,et al. Activation of Nrf2 contributes to the protective effect of Exendin-4 against angiotensin II-induced vascular smooth muscle cell senescence [J]. Am J Physiol Cell Physiol,2016,311(4):572-582.
[5] 李世超,胡泊,范素凈,等.血清血管緊張素(1-7)及血管緊張素Ⅱ在評價高血壓患者心臟重構中的作用[J].臨床心血管病雜志,2016,32(4):367-372.
[6] Xia Z,Kuo KH,Nagareddy PR,et al. N-acetylcysteine attenuates PKCbeta2 overexpression and myocardial hypertrophy in streptozotocin-induced diabetic rats [J]. Cardiovasc Res,2007,73(4):770-782.
[7] Chen H,Wang L,Xing BZ,et al. Ischemic postconditioning attenuates inflammation in rats following renal ischemia and reperfusion injury [J]. Exp Ther Med,2015,10(2):513-518.
[8] McWhinnie DL,Thompson JF,Taylor HM,et al. Morphometric analysis of cellular infiltration assessed by monoclonal antibody labeling in sequential human renal allograft biopsies [J]. Transplantation,1986,42(4):352-358.
[9] 梁理玄,黃向陽,秦曙光,等.糖尿病腎病不同發展階段胰島素用量及糖代謝情況分析[J].中國醫藥導報,2016, 13(3):71-74.
[10] Elrggal ME,Ahmed SM,El NM. Renin-Angiotensin-Aldosterone system blockade in diabetic kidney disease:A critical and contrarian point of view [J]. Saudi J Kidney Dis Transpl,2016,27(6):1103-1113.
[11] Feng YH,Fu P. Dual Blockade of the Renin-angiotensin-aldosterone system in type 2 diabetic kidney disease [J]. Chin Med J(Engl),2016,129(1):81-87.
[12] 高燕,袁魯亮,張海松,等.紅花黃色素對糖尿病腎病模型大鼠腎臟細胞血管緊張素Ⅱ1型受體的影響[J].中國組織工程研究,2016,32(4):367-372.
[13] Rahimi Z,Moradi M,Nasri H. A systematic review of the role of renin angiotensin aldosterone system genes in diabetes mellitus,diabetic retinopathy and diabetic neuropathy [J]. J Res Med Sci,2014,19(11):1090-8.
[14] 趙鵬鳴,王儉勤,梁耀軍,等.內皮細胞損傷在糖尿病腎病發病機制中的作用[J].中國糖尿病雜志,2016,24(2):169-172
[15] Kranch-Shorthouse RA,Bauer AS,Magness RR,et al. A Ovine uterine space restriction causes dysregulation of the renin-angiotensin system in fetal kidneys [J]. Biol Reprod,2017,96(1):211-220.
[16] 梁偉杰,陳美姬,何潔儀,等. 血管緊張素-(1-7)通過抑制TLR4激活和壞死性凋亡的相互作用對抗高糖引起的H9c2心肌細胞損傷[J].中國病理生理雜志,2016, 32(10):1750-1756.
[17] 萬斌,孫麗薇,劉蓉,等.電針對2型糖尿病合并腎性高血壓大鼠模型的療效[J].中國實驗動物學報,2016,24(6):622-627.
[18] Bader M. ACE2,angiotensin-(1-7),and Mas:the other side of the coin [J]. Pflugers Arch,2013,465(1):79-85.
[19] Kang KA,Hyun JW. Oxidative Stress,Nrf2,and epigenetic modification contribute to anticancer drug resistance [J]. Toxicol Res,2017,33(1):1-5.
[20] Sun Q,Shen Z,Meng Q,et al. The role of DJ-1/Nrf2 pathway in the pathogenesis of diabetic nephropathy in rats [J]. Renal Failure,2016,38(2):294-304.
[21] Sun Q,Meng Q,Jiang Y,et al. Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice [J]. Plos One,2013,8(12):e80859.
[22] Cai SM,Yang RQ,Li Y,et al. Angiotensin-(1-7) improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation [J]. Antioxid Redox Signal,2016, 24(14):795-812.
(收稿日期:2017-4-12 本文編輯:蘇 暢)