999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關于不定方程x2+4n=y13(n=4,5,6)的整數解

2017-09-12 08:05:10尚旭
純粹數學與應用數學 2017年4期

尚旭

(浙江師范大學數理與信息工程學院,浙江 金華 321004)

關于不定方程x2+4n=y13(n=4,5,6)的整數解

尚旭

(浙江師范大學數理與信息工程學院,浙江 金華 321004)

在高斯整環中,利用代數數論與同余理論的方法,討論了不定方程

的整數解問題,得出了當n=4,5時無整數解;n=6是僅有整數解

的結論,推進了不定方程整數解的研究.

代數數論;整數解;不定方程

1 引言

設A、B∈N,A無平方因子,關于不定方程

解的問題是數論中的一個重要問題,近些年文獻 [1-10]用代數數論的方法研究了一些不定方程的整數解問題,得到了許多重要的結果,推進了不定方程整數解問題的研究.而對于A=1,B=44,45,46,n=13情況為曾說明,為此利用代數數論和同余的方法給出不定方程x2+4n=y13(n=4,5,6)整數解的結論和證明.

引理 1.1[11]設M 是惟一分解整數環,正整數k≥2,以及 α,β∈Z,(α,β)=1,αβ=τk,τ∈M則有

其中ε1,ε2是M 中的單位元素,并且

ε為單位元素.

2 主要結果與證明

定理2.1不定方程

無整數解.

證明分兩種情況來討論.

(1)當x≡1(mod 2)時,則在Z[i]中,(2)可以等價為

然而這與x≡1(mod 2)產生矛盾,所以η=1.

由此和引理1.1有

因而

由 (4)式得

當 b=1時,由 (4)式,得

當 b=-1時,由 (4)式,得

當 b=2時,由 (4)式,得

上式要成立,需

顯然不可能,故當b=2時不成立.

當 b=-2時,由 (4)式,得

上式要成立,需13|-4104,顯然不可能,故當b=-2時不成立.

當 b=4時,由 (4)式,得

上式要成立,需

顯然不可能,故當b=4時不成立.

當 b=-4時,由 (4)式,得

上式要成立,需

顯然不可能,故當b=-4時不成立.

當 b=8時,由 (4)式,得

上式要成立,需

顯然不可能,故當b=8時不成立.

當 b=-8時,由 (4)式,得

上式要成立,需

顯然不可能,故當b=-8時不成立.

當 b=16時,由 (4)式,得

上式要成立,則

當a2=1時,代入上式中得

所以a2=1不成立.

當a2=9,代入上式中得

所以a2=9不成立.故當b=16時不成立.

當 b=-16時,由 (4)式,得

上式要成立,需

顯然不可能,故當b=-16時不成立.所以當x≡1(mod 2)時,不定方程

無整數解.

(2)當x≡0(mod 2)時,易知x為偶數,y為偶數,令

無整數解.

綜上所述,不定方程(2)無整數解.

定理2.2不定方程

無整數解.

證明分兩種情況來討論.

(1)當x≡1(mod 2)時,則在Z[i]中,(10)可以等價為

將其代入(15)式中得(2x4)2+42=27(y1)13.得

易知x4為偶數,令 x4=2x5,x5∈Z.將其代入(16)式中得(2x5)2+4=25(y1)13.得

易知x5為奇數,令 x5=2x6+1,x6∈Z.將其代入 (17)式中得(2x6+1)2+1=23(y1)13.得

(18)式等號左邊2(x6)2+2x6+1≡1(mod 2),而右邊22(y1)13≡0(mod 2),所以產生矛盾.所以當x≡0(mod 2)時,不定方程x2+45=y13無整數解.

綜上所述,不定方程(10)無整數解.

定理2.3不定方程

僅有整數解(x,y)=(±64,2).

證明分兩種情況來討論.

(1)當x≡1(mod 2)時,則在Z[i]中,(19)可以等價為

即2|x2+46,然而這與x≡1(mod 2)產生矛盾,所以η=1.

由此和引理1.1有

64=b(13a12-286a10b2+1287a8b4-1716a6b6+715a4b8-78a2b10+b12). (21)由 (4)式得

當 b=1時,由(21)式得

當 b=-1時,由(21)式得

上式要成立,則a2=1.將a2=1代入上式得

上式成立,則

將 a2=1,b=-1代入 (20)式解得x=±64,然而這與x≡1(mod 2)矛盾,故不成立.故當b=-1時不成立.

當 b=2時,由(21)式得

上式要成立,需13|-4064,顯然不可能,故當b=2時不成立.

當 b=-2時,由(21)式得

上式要成立,需

顯然不可能,故當b=-2時不成立.

當 b=4時,由(21)式得

上式要成立,需

顯然不可能,故當b=4時不成立.

當b=-4時,由(21)式得

上式要成立,需

顯然不可能,故當b=-4時不成立.

當b=8時,由(21)式得

上式要成立,需

顯然不可能,故當b=8時不成立.

當b=-8時,由(21)式得

上式要成立,需

顯然不可能,故當b=-8時不成立.

當b=16時,由(21)式得

上式要成立,需

顯然不可能,故當b=16時不成立.

當b=-16時,由(21)式得

上式要成立,需

顯然不可能,故當b=-16時不成立.

當b=32時,由(21)式得

上式要成立,需

顯然不可能,故當b=32時不成立.

當b=-32時,由(21)式得

上式要成立,需

顯然不可能,故當b=-32時不成立.

當b=64時,由(21)式得

上式要成立,則

當a2=1時,代入上式中得

所以a2=1時不成立.當a2=9時,代入上式中得

所以a2=9時不成立.故當b=64時不成立.

當 b=-64時,由(21)式得

上式要成立,需

顯然不可能,故當b=-64時不成立.所以當x≡1(mod 2)時,不定方程

無整數解.

3 結語

不定方程的整數解問題是一個悠久的研究課題,許多數學家都有所研究,推進了不定方程整數解問題的發展,本文研究了x2+4n=y13(n=4,5,6)的整數解問題,得出了不定方程x2+4n=y13,當n=4,5時無整數解,當n=6時僅有整數解(x,y)=(±64,2)的結論和證明,接下來希望可以進一步研究不定方程的整數解問題.

[1]Lebesgue V A.Surlimpossibilite en number entiers de equation xm=y2+1[J].Nouvelle Annals of Mathematics,1850,9(1):178-181.

[2]Nagell T.Surlimpossibilite de quelques equations deux indeterminees[J].Norsk Marem Fornmings Skrefter Senel,1921,13(1):65-82.

[3]孫樹東.不定方程x2+64=y13的整數解[J].吉林師范大學學報:自然科學版,2015,(3):78-80.

[4]楊全.關于不定方程x2+16=y9的解[J].牡丹江大學學報,2013,22(8):119-120.

[5]李中恢,張四保.關于不定方程x2+16=y11的解[J].海南大學學報:自然科學版,2009,27(3):216-218.

[6]張杰.關于不定方程x2+64=y7的解的討論[J].慶工商大學:自然科學版,2012,29(3):27-28.

[7]安曉峰.關于不定方程x2+64=y11的解的討論[J].慶工商大學:自然科學版,2014,31(10):16-17.

[8]張四保.關于不定方程x2+16=y13的解[J].華大學學報:自然科學版,2009,10(4):307-309.

[9]唐維彬.關于不定方程x2+4n=y11[J].重慶工商大學:自然科學版,2015,32(1):15-18.

[10]常茸茸,魯志娟.關于丟番圖方程xp?1=Dyn[J].純粹數學與應用數學,2008,24(1):140-143.

[11]潘承洞,潘承彪.代數數論[M].2版.哈爾濱:哈爾濱工業大學出版社,2014.

The integer solution on Diophantine equation x2+4n=y13(n=4,5,6)

Shang Xu

(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua 321004,China)

In the Gauss domain,using the method of algebraic number theory and congruence theory,we discuss the problem of integer solution of Diophantine equation x2+4n=y13(n=4,5,6).We obtained when n=4,5,x2+4n=y13has no integer solution,when n=6,x2+4n=y13has only integer solution(x,y)=(±64,2),which advanced the study of Diophantine equation.

algebraic number theory,integer solution,Diophantine eqution

O156;O156.2

A

1008-5513(2017)04-0377-15

10.3969/j.issn.1008-5513.2017.04.006

2017-05-01.

國家自然科學基金(11171137);浙江省自然科學基金(LY13A010008).

尚旭(1989-),碩士生,研究方向:初等數論與算子代數.

2010 MSC:11D45

主站蜘蛛池模板: 成人久久18免费网站| 欧美www在线观看| 毛片基地美国正在播放亚洲 | 国产亚洲欧美另类一区二区| 精品伊人久久大香线蕉网站| 精品第一国产综合精品Aⅴ| 日本一本正道综合久久dvd | 亚洲视屏在线观看| 国产成人盗摄精品| 国产成人AV男人的天堂| 亚洲AV无码一二区三区在线播放| 亚洲一道AV无码午夜福利| 亚洲综合国产一区二区三区| 91视频区| 国产在线精品美女观看| 亚洲一区免费看| 又猛又黄又爽无遮挡的视频网站| 欧美无专区| 免费一看一级毛片| 国产99在线| 国产精品3p视频| 为你提供最新久久精品久久综合| 这里只有精品在线播放| 国产自视频| 久久精品国产在热久久2019| 激情爆乳一区二区| 囯产av无码片毛片一级| 丁香五月婷婷激情基地| 欧美高清三区| 伊人久久精品亚洲午夜| 国产一级视频久久| 一本色道久久88亚洲综合| 2020久久国产综合精品swag| 久久6免费视频| 亚洲三级电影在线播放| 九色综合伊人久久富二代| 国产jizz| 国产精品一线天| 日韩无码视频专区| 精品国产91爱| 三上悠亚精品二区在线观看| аⅴ资源中文在线天堂| 亚洲色图欧美| A级全黄试看30分钟小视频| 3D动漫精品啪啪一区二区下载| 免费国产高清视频| 免费观看三级毛片| 永久在线精品免费视频观看| 色综合久久综合网| 无码内射在线| 亚洲性网站| 在线观看欧美国产| 国产美女91呻吟求| 奇米影视狠狠精品7777| aⅴ免费在线观看| 四虎影视库国产精品一区| 欧美一区精品| 伊伊人成亚洲综合人网7777| 女人天堂av免费| 久久香蕉国产线看观看亚洲片| 好吊日免费视频| 99这里只有精品在线| 三上悠亚在线精品二区| 欧美人在线一区二区三区| 欧美一级99在线观看国产| 亚洲精品男人天堂| 国产在线精彩视频论坛| 天天操天天噜| 免费欧美一级| 国产精品视频白浆免费视频| 中文字幕在线看| 一本久道久综合久久鬼色| 午夜高清国产拍精品| 国产高清无码麻豆精品| 久久香蕉国产线看精品| 亚洲成人在线免费观看| 国产免费怡红院视频| 亚洲国产高清精品线久久| 欧美黄色a| 国产亚洲精品yxsp| 四虎影视8848永久精品| 精品無碼一區在線觀看 |