999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NEW RECURRENCE FORMULAE FOR THE POLYLOGARITHM FUNCTION

2017-11-06 09:36:37HEYuanZHANGJialing
數學雜志 2017年6期
關鍵詞:技巧

HE Yuan,ZHANG Jia-ling

(School of Science,Kunming University of Science and Technology,Kunming 650500,China)

NEW RECURRENCE FORMULAE FOR THE POLYLOGARITHM FUNCTION

HE Yuan,ZHANG Jia-ling

(School of Science,Kunming University of Science and Technology,Kunming 650500,China)

In this paper,we perform a further investigation for the polylogarithm function at negative integral arguments.By applying the generating function methods and Padé approximation techniques,we establish some new recurrence formulae for this type function and present some illustrative special cases of main results.

polylogarithm function;generating function;Padé approximants;recurrence formulae

1 Introduction

Letsandzbe complex numbers,the polylogarithm function Lis(z)is de fined by means of the Dirichlet series

which is valid for arbitrary complex ordersand for all complex argumentszwith|z|<1 and can be extended to|z|≥1 by the process of analytic continuation.

The polylogarithm function at zero and negative integral arguments are referred to as the polypseudologarithms(or polypseudologs)of ordernby Lee[8].It is worth noticing that the values of polypseudologrithms atz=1 are related to the values of the Riemann zeta functionζ(s)at negative integers and are expressed in terms of the Bernoulli numbersBn,as follows(see,e.g.,[4,8])

In[11],Truesdell gave a closed formula for the polypseudologarithms,as follows

whereS(n,k)is the familiar Stirling numbers of the second kind.In[6],Eastham showed that there is no pure recurrence relation of the form

wherenis a positive integer,r≥nis allowed.TheAn(z)are algebraic functions ofzandA0(z)is not identically zero.More recently,Cvijovi?[5]discovered some similar ones for the polypseudologarithms to formula(1.3),and also established a new type closed formula for the polypseudologarithms in the following way

where[x]denotes the greatest integer≤xandT(n,k)is the tangent numbers(of orderk)or the higher order tangent numbers given by(see,e.g.,[3])

Motivated by the work of Eastham and Cvijovi?,in this paper we perform a further investigation for the polylogarithm function at negative integral arguments,and establish some new recurrence formulae for this type function to state that there exist some explicit recurrence relations of form(1.4)for the polypseudologarithms by applying the generating function methods and Padé approximation techniques.And we accordingly consider some illustrative special cases as well as immediate consequences of the main results.

2 Padé Approximants

We begin by recalling the de finition of Padé approximation to general series and their expression in the case of the exponential function.Letm,nbe non-negative integers and letPkbe the set of all polynomials of degree≤k.Given a functionfwith a Taylor expansion

in a neighborhood of the origin,a Padé form of type(m,n)is a pair(P,Q)satisfying that

and

It is clear that every Padé form of type(m,n)forf(t)always exists and obeys the same rational function.The uniquely determined rational functionP/Qis called the Padé approximant of type(m,n)forf(t),and is denoted by[m/n]f(t)orrm,n[f;t],see for example,[1,2].

The study of Padé approximants to the exponential function was initiated by Hermite[7]and then continued by Padé[9].Given a pair(m,n)of nonnegative integers,the Padé approximant of type(m,n)foretis the unique rational function

with the property that

Unlike Padé approximants to other functions,it is possible to determine explicit formulae forPm,nandQm,n(see,e.g.,[10,p.245])

and

We here refer respectively toPm,n(t)andQm,n(t)as the Padé numerator and denominator of type(m,n)foret.In next section,we shall use the above Padé approximation to the exponential function to establish some new recurrence formulae for the polylogarithm function at zero and negative integral arguments.

3 The Restatements of Results

In[4],Cvijovi? discovered some similar formulae to(1.3)by making use of the following generating functions for the polypseudologarithms(see,e.g.,[11,12])

and

We shall replace the exponential functionetnot by its Taylor expansion aroundt=0 but by its Padé approximant in the generating function of the polypseudologarithms.We first rewrite the first formula of(3.1)as follows

If we denote the right hand side of(2.8)bySm,n(t),the Padé approximant for the exponential functionetcan be expressed as

We now apply(3.4)to(3.3)and then obtain

If we apply the exponential seriesin the right hand side of(2.8),with the help of the familiar beta function,we get

For convenience,we considerpm,n;k,qm,n;kandsm,n;kof the coefficients of the polynomialsPm,n(t),Qm,n(t)andSm,n(t)such that

Obviously,the coefficientspm,n;k,qm,n;kandsm,n;kobey

and

respectively.If we apply(3.7)to(3.5),we obtain

from which and the familiar Cauchy product,we discover

Comparing the coefficients oftlin(3.11)gives that for 1≤l≤m+n,

which together with(3.8)yields the following result.

Theorem 3.1Letl,m,nbe non-negative integers.Then for positive integerlwith max(m,n)<l≤m+n,

We next discuss some special cases of Theorem 3.1.Settingl=m+nin Theorem 3.1,we obtain that for positive integersm,n,

It is obvious that the casem=1 in(3.14)gives that for positive integern,

and the casen=1 in(3.14)arises

If we compare the coefficients oftlin(3.11)forl≥m+n+1,then

Hence applying(3.8)and(3.9)to(3.17)gives the following result.

Theorem 3.2Letm,nbe non-negative integers.Then for positive integerlwithl≥m+n+1,

It follows that we show some special cases of Theorem 3.2.Takingl=m+n+1 in Theorem 3.2,we obtain that for non-negative integersm,n,

In particular,the casem=0 in(3.19)arises

More generally,by settingm=0 andl=n+rin Theorem 3.2,we get that for non-negative integernand positive integerr,

And the casen=0 in(3.21)yields another recurrence formula to compute the values of the polypseudologarithms with Li0(z)=z/(1?z):

It becomes obvious that formulae(3.15),(3.16)and(3.22)mean that there exists pure recurrence relations of form(1.4)for the polypseudologarithms,respectively.

AcknowledgementThis work was done during the authors’visit for Department of Computer Science,State University of New York at Stony Brook.

[1]Baker Jr G A,Graves-Morris P.Padé approximants(2nd ed.)[M].Cambridge:Cambridge Univ.Press,1996.

[2]Brezinski C.History of continued fractions and Padé approximant[M].Berlin:Springer-Verlag,1991.

[3]Carlitz L,Scoville R.Tangent numbers and operators[J].Duke Math.J.,1972,39:413–429.

[4]Chen G H,Liu B L.Some identities related to the dedekind sums[J].J.Math.,2014,34:198–204.

[5]Cvijovi? D.Polypseudologarithms revisited[J].Phys.A,2010,389:1594–1600.

[6]Eastham M S P.On polylogarithms[J].Proc.Glasgow Math.Assoc.,1964,6:169–171.

[7]Hermite C.Sur lafonction exponentielle[J].C.R.Acad.Sci.Paris,1873,77:18–24,74–79,226–233,285–293.

[8]Lee M H.Polylogarithms and Riemann’sζfunction[J].Phys.Review E,1997,56:3909–3912.

[9]Padé H.Librairie scientifique et technique(edited by C.Brezinski)[M].Paris:A.Blanchard,1984.

[10]Perron O.Die Lehre von den Kettenbriichen(3rd ed.)[M].Stuttgart:Teubner,1957.

[11]Truesdell C.On a function which occurs in the theory of the structure of polymers[J].Ann.Math.,1945,46:144–157.

[12]Zeitlin D.Two methods for the evaluation ofAmer.Math.Monthly,1961,68:986–989.

關于polylogarithm函數新的循環公式

何 圓,張家玲
(昆明理工大學理學院,云南昆明 650500)

本文對polylogarithm函數在負整數點的情形作了進一步的研究.利用生成函數方法及Padé估計技巧,建立了此類函數的一些新的循環公式,并給出了主要結果的一些特殊情況.

polylogarithm函數;生成函數;Padé估計;循環公式

O156.4

11E41;33E20;05A19

A

0255-7797(2017)06-1154-07

date:2015-01-09Accepted date:2015-10-10

Supported by the Foundation for Fostering Talents in Kunming University of Science and Technology(KKSY201307047)and the National Natural Science Foundation of China(11326050;11071194).

Biography:He Yuan(1982–),male,born at Neijiang,Sichuan,associate professor,major in number theory and its applications.


登錄APP查看全文

猜你喜歡
技巧
面試的技巧
肉兔短期增肥有技巧
今日農業(2021年1期)2021-11-26 07:00:56
網上點外賣的7個技巧
中老年保健(2021年4期)2021-08-22 07:10:02
開好家長會的幾點技巧
甘肅教育(2020年12期)2020-04-13 06:24:46
掌握技巧,玩轉完形
指正要有技巧
4個技巧快速消除頭上的飛發
掌握技巧,玩轉完形
提問的技巧
鳥.技巧
數碼攝影(2011年2期)2011-04-12 00:00:00
主站蜘蛛池模板: 永久免费无码成人网站| 青青国产视频| 日韩无码黄色网站| 色综合狠狠操| 久久久噜噜噜久久中文字幕色伊伊| 亚洲欧美另类中文字幕| 久久伊人久久亚洲综合| 男人天堂亚洲天堂| 狠狠综合久久| 91精品福利自产拍在线观看| 成人免费视频一区| 亚洲成人在线网| 国产欧美日韩va| 精品久久777| 亚洲精品无码成人片在线观看| 2020国产免费久久精品99| 国内精品91| 国产精品极品美女自在线看免费一区二区| 国产激情国语对白普通话| 青青草原国产免费av观看| 热伊人99re久久精品最新地| 国产成人三级在线观看视频| 国产亚洲男人的天堂在线观看| 国产乱视频网站| 国产成人AV男人的天堂| 97亚洲色综久久精品| 有专无码视频| 欧美成人手机在线观看网址| 不卡网亚洲无码| 成年人国产视频| 一区二区日韩国产精久久| 在线免费不卡视频| 色综合天天综合| 亚洲精品无码久久久久苍井空| 超薄丝袜足j国产在线视频| 国产丰满大乳无码免费播放| 国产啪在线91| 97人人做人人爽香蕉精品| 国产精品无码作爱| 影音先锋亚洲无码| 妇女自拍偷自拍亚洲精品| 91精品国产一区自在线拍| 一本一道波多野结衣av黑人在线 | 日本午夜三级| 中文字幕首页系列人妻| 九九九九热精品视频| 国产真实乱了在线播放| 亚洲国产理论片在线播放| 日韩av高清无码一区二区三区| 久久久受www免费人成| 2020精品极品国产色在线观看| 色135综合网| 国产欧美自拍视频| 中文字幕亚洲专区第19页| 精品亚洲国产成人AV| 国产迷奸在线看| 91在线高清视频| 日韩欧美成人高清在线观看| 天天综合亚洲| 国产成人精品2021欧美日韩| 激情无码字幕综合| 18禁色诱爆乳网站| 国产精品v欧美| 国外欧美一区另类中文字幕| 国产一区二区色淫影院| 国产男人的天堂| 国产理论一区| 91免费国产在线观看尤物| 久久综合五月| 98精品全国免费观看视频| 久久青草精品一区二区三区| 强奷白丝美女在线观看| 亚洲精品欧美日韩在线| 91av国产在线| 久久精品免费看一| 日韩AV无码一区| 免费国产小视频在线观看| 天天干伊人| 亚洲欧美成人| 欧美在线国产| 国产精品第5页| 在线毛片免费|