999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NEW PARTIAL DIFFERENCE SETS AND CYCLOTOMIC NUMBER PROPERTIES

2017-11-06 09:36:34ZHANGYuanPENGMao
數學雜志 2017年6期
關鍵詞:普通高校性質南京

ZHANG Yuan,PENG Mao

(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China)

NEW PARTIAL DIFFERENCE SETS AND CYCLOTOMIC NUMBER PROPERTIES

ZHANG Yuan,PENG Mao

(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China)

In this paper,the connections among the theory of cyclotomy,partial difference sets and strongly regular graphs are studied.By means of cyclotomy,a new family of partial difference sets are constructed and new properties of cyclotomic numbers are obtained in reverse.

partial difference set;cyclotomic number;strongly regular graph

1 Introduction

The word cyclotomy(German,“Kreistheilung”)means“circle-division”and refers to the problem of dividing the circumference of the unit circle into a given number,n,of arcs of equal lengths.By the theory of cyclotomy,we shall mean the special attack upon this problem discovered by Gauss in connection with the ruler-and-compass construction of the regular polygon ofnsides.

Letq=ef+1 be an odd prime power,and letθbe a fixed primitive element of GF?(q).De finewhere(θe)denotes the multiplicative subgroup generated byθe.The cosetsare called the index classes or cyclotomic classes of orderewith respect to GF(q).

For fixediandj,we de fineto be the number of solutions of the equation

where 1=x0is the multiplicative unit of GF?(q).That is,(i,j)is the number of ordered pairs such that

These constants(i,j)(e)qare called cyclotomic numbers of orderewith respect to GF(q),(i,j)in short if without any confusion.For more information about cyclotomic theory,one may be referred to[1]and[2–4].

It is easy to check the elementary relationships between the cyclotomic numbers.

(1)For any integersm,n,(i+me,j+ne)=(i,j).

(2)(i,j)=(e?i,j?i).

In 1953,Lehmer[5]established a simple and powerful connection between the theory of cyclotomy and the existence of difference sets.Since then,more and more difference sets were established by means of cyclotomic method.And also,some new properties of cyclotomy were achieved from the existence of difference sets.

De finition 1.1A partial difference setDis a subset of a groupGwith the property that every nonidentity element ofDcan be representedλtimes as a difference between a pair of elements inDwhile every nonidentity element ofGDcan be representedμtimes as a difference between a pair of elements inD.Likewise,partial difference sets have parameters(v,k,λ,μ)associated with them,wherev=|G|,k=|D|,andλandμare as described above.

In 1963,Bose[6]introduced the concept of strongly regular graphs.

De finition 1.2An undirected graph without loops and multiple edges onvvertices is called a(v,k,λ,μ)-strongly regular graph if it is regular with valencyk,and each adjacent pair of vertices hasλvertices,which are adjacent to both of them,also each non-adjacent pair of vertices hasμvertices,which are adjacent to both of them.

Clearly a disconnected strongly regular graph is a disjoint union of complete graphs of equal size.The complement of a strongly regular graph with parameters(v,k,λ,μ)is also a strongly regular graph with parameters(v,v?k?1,v?2k+μ?2,v?2k+λ).In consequence,we have the trivial necessary conditionv?2k+μ?2≥0 for the existence of a strongly regular graph.A simple counting argument shows that we also have the necessary conditionk(k?1)=kλ+(v?k?1)μ.For more information,one can be refered to[7–9].

As it is known that partial difference sets can be used to construct strongly regular graphs.

SupposeDis a(v,k,λ,μ)partial difference set inG.Let the elements ofGbe vertices of a graph,and join two verticesv1,v2with an edge ifv1?v2∈D.For all verticesv,they will havekedges going into them because each will be connected tov+dfor alld∈D.If we consider two verticesv1,v2,connected to a vertexx,thenx?v1∈Dandx?v2∈D.By taking(x?v1)?(x?v2)=v1?v2,this shows that there must beλvalues forxifv1?v2∈Dandμvalues forxifv1?v2∈GD.Thus if there is a partial difference set,there exist a strongly regular graph with the same parameters.So in this paper,we equate the two concepts if without confusion.

In this paper,we firstly give a construction of a family of partial difference sets which also means the existence of strongly regular graphs with the same parameters.Then we get new properties of cyclotomic numbers.

2 Construction of Partial Di ff erence Sets and Strongly Regular Graphs

Denoteq=ef+1,letD={(a,b):a,b∈Diat the same time,iruns from 0 toe?1},so we have|G|=q2,We will discuss the setDin groupGaccording to the value ofe.

2.1 e=2,3,4,6

In this subsection,q=2f+1,

Whene=2,by the properties,the cyclotomic numbers are given as follows.Ifq≡1(mod 4),then

Ifq≡3(mod 4),then

We can compute the differences directly from the cyclotomic numbers,no matterfis odd or even.

·(a,0)appears as a difference,wherea≠0.That is,(a,0)=(a1,b1)?(a2,b1).

Table 1

·(0,b),whereb≠0,is the same as the above case,that is,(0,b)appearsf(f?1)times.

·(a,b)∈Dappears as a difference,that is(a,b)=(a1,b1)?(a2,b2),(ai,bi)∈D,i=1,2.

Table 2

We can see from the table that(a,b)∈Dappears as many times as the sum of the squares of all the cyclotomic numbers.

·(a,b)/∈Danda≠0,b≠0.(a,b)=(a1,b1)?(a2,b2).

Table 3

Hence,above all,

Obviously,Dis a partial difference set with parameters

Example 1Whene=2,f=1,q=3=2×1+1.In GF(q),D0={1},D1={2},so

Obviously,Dis a(9,2,1,0)partial difference set.The corresponding strongly regular graph is Figure 1,which is disconnected.

Figure 1:(9,2,1,0)strongly regular graph

Example 2Whenf=2,q=5=2×2+1.In GF(q),D0={1,4},D1={2,3},so

Figure 2:(25,8,3,2)strongly regular graph

Whene=3,4,6,following the same process,we have proved that whenq=ef+1 is a prime power,there existpartial difference sets,and also exist strongly regular graphs with the same parameters.Enlightened by the so trim form,we conjecture that the above result may also be true for other“e”s.

2.2 For General e

Theorem 2.1LetwhereDi×Distands for{(x,y)|x,y∈Di}.ThenDis a partial difference set in(GF(q)⊕GF(q),+).

We will prove the theorem by using character theory and a property of Gauss periods.

Let GF(q)be the finite field of orderq,whereq=pt,pis a prime.Letq=ef+1,wheree>1,and letgbe a primitive element ofGF(q).We use the following standard notationψ1:GF(q)→C is the additive character ofGF(q)such thatψ1(x)=ξTr(x)p,whereξpis a complex primitivepth root of unity and Tr is the absolute trace from GF(q).

are the Gauss periods.

The following well-known character theoretic characterizations of abelian partial difference sets will be used in our proof.

Lemma 2.2LetGbe an abelian group of ordervandDbe a subset ofGwith{d?1:d∈D}=D.ThenDis a(v,k,λ,μ)partial difference set inGif and only if,for any characterχofG,

據訪問,南京普通高校定向運動開展的場地一般可分為兩種,即校內場地與校外場地。校內場地的使用一般是整個校園,校外場地是南京的各個開放式公園。這些高校更多的會使用校內場地,較少使用校外場地。

whereβ=λ?μ;γ=k?λife∈D,andγ=k?μif.

Proof of Theorem 2.1.Letψa?ψbbe a character of(GF(q)⊕GF(q),+).Then

Ifa=0 orb=0(but not both),then one easily sees thatψa?ψb(D)=?f.

Ifa≠0 andb≠0,then

Letab?1=gl.Thenψa? ψb(D)=Now note the following property of Gauss periodswhereδl,0=1 ifl=0 and it equals 0 otherwise.We have

Therefore we have shown that the character sumψa?ψb(D)takes two valuesq?f,?fasψa?ψbruns through all nontrivial characters of(GF(q)⊕GF(q),+).This proves thatDis a partial difference set.

It is not difficult to check the parameters are,f2+(e?3)f+1,f(f?1)).

From the point of the strongly regular graphs,supposeq=ef+1 is a prime power.Construct a graphGwithq2vertices.Label these vertices with(a,b),here(a,b)∈GF(q)×GF(q).LetD={Di×Di:i=0,1,···,e?1}.Call(a,b)~(a′,b′)i ff(a?a′(modq),b?b′(modq))∈D,we usually omit the“(modq)”if with none confusion.Since for any vertex(a,b),(a,b)~(a,b)+D,so the degree of(a,b)is|D|=(q?1)2.By Theorem 2.1,Gis a(q2,,f2+(e?3)f+1,f(f?1))strongly regular graph.

3 The New Properties of Cyclotomic Numbers

Since we have proved the existence of the partial difference sets,we can use it to get some properties of cyclotomic numbers in return.

As it is known that for a(v,k,λ,μ)partial difference setD,every nonidentity element ofDcan be representedλtimes as a difference between a pair of elements inDwhile every nonidentity element ofGDcan be representedμtimes as a difference between a pair of elements inD.

On the other hand,for any element(a,b),it can be represented as(a1,b1)?(a2,b2),here(a1,b1),(a2,b2)∈D.

(1)(a,b)∈D.

(2)(a,b)/∈D.

?a=0 orb=0,but not both.

?a≠0 andb≠0.Suppose(a,b)∈Di×Dj,0≤i,j≤e?1,i≠j,

So we get the new properties of cyclotomic numbers.

Theorem 3.1Supposeq=ef+1 is a prime power.The cyclotomic numbers satisfy

[1]Storer T.Cyclotomy and difference sets[M].Chicago:Markhan,1967.

[2]Arasu K T,Ding C,Helleseth T,Kumar P V.Almost difference sets and their sequences with optimal autocorrelation[J].IEEE Trans.Inform.Theory,2001,47:2834–2843.

[3]Ding C,Helleseth T,Lam K Y.Several classes of binary sequences with three-level autocorrelation[J].IEEE Trans.Inform.Theory,1999,45:2606–2612.

[4]Ding C,Helleseth T,Martinsen H.New families of binary sequences with optimal three-level autocorrelation[J].IEEE Trans.Inform.Theory,2001,47:428–433.

[5]Lehmer E.On residue differences sets[J].Canad.J.Math.,1953,5:425-432.

[6]Bose R C.Strongly regular graphs,partial geometries and partially balanced designs[J].Pacific J.Math.,1963,13:389–419.

[7]Brouwer A E. Strongly regular graphs,the CRC handbook of combinatorial designs[M].C.J.Colbourn and J.H.Dinitz(Editors):CRC Press,1996:667–685.

[8]Brouwer A E,Cohen A M,Neumaier A.Distance regular graphs[M].Berlin,Heidelberg:Springer,1989.

[9]Calderbank R,Kantor W M.The geometryof two weight codes[J].Bull.London Math.Soc.,1986,18:97–122.

[10]Beth T,Jungnickel D,Lenz H.Design theory(2nd ed.)[M].Cambridge,UK:Cambridge University Press,1999.

[11]Bose R C,Dowling T A.A generalization of Moore graphs of diameter two[J].J.Combin.Theory Ser.B,1971,11:213–226.

[12]Brouwer A E.Some new two-weight codes and strongly regular graphs[J].Disc.Appl.Math.,1985,10:111–114.

[13]Bruck R H,Bose R C.Linear representations of projective planes in projective spaces[J].J.Alg.,1966,1:117–172.

[14]Feng Tao,Xiang Qing.Cyclotomic constructions of skew Hadamard difference sets[J].J.Comb.Theory,Ser.A,2012,119:245–256.

[15]Hamilton N,Quinn C.m-systems of polar spaces and maximal arcs in projective planes[J].Bull.Belg.Math.Soc.Simon Stevin,2000,7:237–248.

[16]Hirschfeld J W P.Projective geometries over finite fields[M].Oxford:Oxford University Press,1998.

[17]Ott U.A generalization of a cyclotomic family of partial difference sets given by Fernández-Alcober,Kwashira and Martínez[J].Disc.Math.,2016,339:2153–2156.

[18]Zhang Yuan,Lei jianguo,Zhang Shaopu.A new family of almost difference sets and some necessary conditions[J].IEEE Trans.Inform.Theory,2006,51:2052–2061.

[19]Zheng Luliang,Lin Liying,Zhang Shengyuan.Constructions of almost difference set pairs by cyclotomy[J].J.Math.,2014,34:116–122.

一類新的部分差集以及分圓數的新性質

張 媛,彭 茂
(南京信息工程大學數學與統計學院,江蘇南京 210044)

本文研究了分圓理論與部分差集,強正則圖的關系.利用分圓方法,構造了一類新的部分差集,并反過來得到了分圓數的一些新性質.

部分差集;分圓數;強正則圖

O157.2

05B10

A

0255-7797(2017)06-1207-08

date:2017-01-16Accepted date:2017-04-26

Supported by National Natural Science Foundation of China(11401317).

Biography:Zhang Yuan(1979–),female,born at Shijiazhuang,Hebei,lecturer,major in combinatorial designs.


登錄APP查看全文

猜你喜歡
普通高校性質南京
南京比鄰
“南京不會忘記”
環球時報(2022-08-16)2022-08-16 15:13:53
隨機變量的分布列性質的應用
完全平方數的性質及其應用
中等數學(2020年6期)2020-09-21 09:32:38
九點圓的性質和應用
中等數學(2019年6期)2019-08-30 03:41:46
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
普通高校音樂教育教學改革探析
北方音樂(2017年4期)2017-05-04 03:40:25
又是磷復會 又在大南京
普通高校健美操教學改革探討
人間(2015年19期)2016-01-04 12:46:56
論普通高校國防教育課程體系的構建
主站蜘蛛池模板: 99视频有精品视频免费观看| 999国内精品久久免费视频| 国产一区二区福利| 亚洲水蜜桃久久综合网站| 蜜臀AVWWW国产天堂| 新SSS无码手机在线观看| 成人国产精品一级毛片天堂| 精品久久国产综合精麻豆| 亚洲欧美极品| 精品天海翼一区二区| 久久这里只有精品8| 全部免费特黄特色大片视频| 亚洲天堂久久新| 91免费观看视频| 亚洲欧洲免费视频| 亚洲国产看片基地久久1024 | 97se综合| 欧美国产日韩在线观看| 国产亚洲美日韩AV中文字幕无码成人 | 久久中文字幕不卡一二区| 亚洲av中文无码乱人伦在线r| 日韩无码黄色| 国产尤物视频在线| 一级毛片无毒不卡直接观看| 熟妇人妻无乱码中文字幕真矢织江 | 99久久国产综合精品2023| 久久久国产精品无码专区| 伊人色在线视频| 精品视频在线观看你懂的一区| 一级毛片不卡片免费观看| 色男人的天堂久久综合| 国产亚洲视频免费播放| 秋霞一区二区三区| 亚洲乱码在线视频| 伊人久久婷婷五月综合97色| 国产青榴视频| 色综合狠狠操| 91在线国内在线播放老师| av在线无码浏览| 国产欧美日韩视频一区二区三区| 亚洲天堂首页| 成年网址网站在线观看| 综合色亚洲| 精品午夜国产福利观看| 欧美性久久久久| 国产精品成人观看视频国产 | 91精品国产91欠久久久久| 日韩小视频在线观看| 午夜少妇精品视频小电影| 99久久精品视香蕉蕉| 欧美日韩一区二区在线免费观看 | 美女国产在线| 在线看AV天堂| 动漫精品中文字幕无码| 色香蕉影院| 超碰精品无码一区二区| 欧美啪啪一区| 欧美亚洲一二三区| 国产18在线播放| 国产欧美日韩综合一区在线播放| 亚洲欧美精品一中文字幕| 亚洲二区视频| 18禁不卡免费网站| 91探花在线观看国产最新| 无码人中文字幕| 国产一级毛片网站| aaa国产一级毛片| 久久久久久久久亚洲精品| 久久狠狠色噜噜狠狠狠狠97视色| 亚洲成人手机在线| 亚洲精品第一页不卡| 亚洲浓毛av| 制服丝袜在线视频香蕉| 亚洲另类国产欧美一区二区| 欧美成人免费午夜全| 国产新AV天堂| 亚洲AV一二三区无码AV蜜桃| 国产精品露脸视频| 精品在线免费播放| 久久无码av三级| 国产成人精品18| 美女国产在线|