向頡, 茅永興, 郭才發
(中國衛星海上測控部, 江蘇 江陰 214431)
船載雷達測速數據的船速修正新方法
向頡, 茅永興, 郭才發
(中國衛星海上測控部, 江蘇 江陰 214431)
傳統測量船船載雷達測速數據修正方法,忽略了船體搖擺、升沉、側向移動等因素對天線速度造成的影響,僅使用航向數據和計程儀測速數據計算天線相對大地的速度。對傳統修正方法的推導過程進行分析,發現了該修正方法回避了一些誤差項,并在其簡化公式中找出了忽略的誤差部分。針對該方法所忽略的誤差,建立了一種更加完善的多普勒測速修正方法。新方法包含了兩個子模型:基于全球定位系統測速的慣性導航平臺速度模型和目標速度修正模型。為了驗證其精度,在精度校飛任務、近地軌道任務和遠地軌道任務中分別對數據本身精度和定軌情況進行了檢驗。結果表明,新方法較傳統方法在消除隨機誤差方面有很大的改善。
信息處理技術; 船速修正; 全球定位系統; 慣性導航平臺; 精度校飛; 測量船
目標測速數據是目標測量信息中非常重要的元素,人們常常使用它進行目標特性分析[1]、提高定位定速結果[2-3]、預測目標運動態勢[4]等,因此獲取高精度的測速信息對于數據使用者至關重要。由于多普勒測速雷達精度較高,在醫療、交通、氣象、航空航天等領域有著廣泛的應用。在航天測量船上,許多雷達設備都具備多普勒測速的功能[5-6]。船載雷達測速數據體現了運動中的航天器與雷達天線之間的距離變化率。測速數據從測量坐標系轉換至瞬時站址慣性導航(簡稱慣導)地平坐標系后,方才提供給用戶使用。提供使用的雷達測速數據是運動中的航天器相對于靜止不動的雷達天線的距離變化率,而船載雷達的原始測速數據中還包含了雷達天線相對于大地的運動速度[7-8]。因此,必須從雷達原始測速數據中扣除天線自身運動所帶來的影響。20世紀90年代,我國建立起了雷達測速數據的船速修正方法,該方法提出時間早、實施簡易,因此一直沿用至今。但隨著數據精度要求的提高,該方法也日顯不足。本文就傳統修正方法展開分析,找出精度不足的主要原因,進而建立一種無忽略誤差項的完整修正方法。
傳統的船速修正方法基于以下原理[7]:
(1)



(2)
式中:Rg為目標在慣導地平系中的測距值;Rc為目標在測量系中的測距值;xc為rc的x方向分量。對(2)式及其推導過程進行分析,不難發現該過程必須建立在兩個假設條件下:
條件1將測量雷達天線的運動速度使用測量船的運動速度替換;
條件2將船航行速度化簡為只在航向上具有速度的一維矢量。
很明顯這兩個假設條件跟實際不符。雷達天線的運動速度不僅跟測量船線性移動速度有關,由于天線安裝位置與慣導安裝位置不一致,船體在縱橫艏方向上的旋轉搖擺也會對其產生影響,在計算天線速度時必須考慮船搖速度,因此不能夠直接使用船體速度替代天線速度。并且,船體受到海浪的影響,其在地平系中的三維速度也不僅僅為沿航向移動的速度,經試驗驗證船體的側向速度和深沉速度會對船體三維空間速度產生不小的影響,所以也不能將船體運動速度簡化為只有航向上有速度,其他方向都為0的矢量。
原始測量信息中只有船體的速度數據,并沒有對雷達天線速度的觀測數據,因此要獲取準確的雷達天線在地平坐標系中的三維速度,必須建立基于船速測量計算天線速度的數學模型。
航天測量船具備測量船體速度的設備有慣導平臺和全球定位系統(GPS)。慣導只具備平面測速功能,即無法測量船體的天向移動速度,因此船速選用GPS測速數據。測量船體姿態信息的設備只有慣導設備,因此船姿使用慣導測姿數據。由于慣導、GPS和雷達天線安裝在不同的位置,它們對應的數據代表了不同點位的測量信息。本文將慣導中心作為過渡點,先把GPS測速等效至慣導中心處,然后基于慣導建立天線速度的計算模型并進行扣除。2.1節和2.2節為分步計算的速度修正數學模型。
2.1 基于GPS測速的慣導平臺速度模型
GPS測速實際測量的是GPS天線相對大地的運動速度,該速度由船體航行和船體搖擺產生。研究由GPS測速計算慣導平臺速度方法將從這兩個方面進行。
2.1.1 船搖引起GPS天線速度計算方法
GPS接收天線在慣導地平坐標系下的位置矢量rGPS,g為
(3)
式中:r0,GPS為GPS天線在慣導甲板坐標系下的位置矢量。對(3)式求導,得到:
(4)
2.1.2 GPS天線船搖速度修正
慣導平臺中心的速度等于扣除船搖影響后的GPS接收天線的速度,使用公式表示為
(5)

2.2 目標速度修正模型

(6)



(7)

(8)
第三步,完成雷達慣導地平系測速修正。
(9)


(10)
式中:ρg為慣導地平坐標系下的測距數據,

(11)
通過以上步驟就完成了新船速修正方法的構建,該方法未舍棄任何誤差項,屬于完整的速度修正方法,在實際計算過程中需要使用到雷達測角、船搖測角和變形測角的變化率,它們可對角度的實際測量值進行求導獲得。
為了充分驗證新方法的精度,本文在精度校飛任務、近地軌道任務和遠地軌道任務中分別對數據本身精度和定軌情況進行了檢驗。
選取精度校飛任務某架次數據進行處理。該架次中測量船橫搖幅值在-1.0°~0.4°之間,縱搖幅值在-0.2°~2.0°之間,航向在270.4°~271.6°之間。飛機飛行航高在7 320~7 420 m之間,飛行方向自大地正北向大地正南。對使用傳統簡化修正方法得到的測速、使用新的完整修正方法得到的測速以及使用星載GPS等效至雷達的測速數據進行繪圖,如圖1所示。

圖1 精度校飛中測速數據曲線圖Fig.1 Measured speed data in checking flight
圖1中,對于200 m/s的測速,3種測速之間的差異用肉眼無法進行識別。從第2節中可知,傳統簡化修正方法忽略的誤差主要是側向速度、天向速度和搖擺速度造成的速度誤差,而這3個因素的綜合影響不會超過1 m,因此造成了圖1中曲線重疊的現象。傳統方法與新方法的精度差異只能通過與高精度差分GPS數據的殘差顯示。對于精度校飛任務,分別繪制簡化修正與GPS殘差、完整修正與GPS殘差曲線,如圖2所示。

圖2 精度校飛中兩種修正方法與GPS測速殘差Fig.2 Speed correction residual errors of the simplified and complete correction methods and GPS in checking flight
在圖2中,完全修正的測速與GPS等效測速吻合性要明顯高于簡化修正的測速數據。完全修正方法相比簡化方法,在消除毛刺、去除正弦趨勢、降低殘差方差等方面有明顯的改善。對于在軌衛星任務,按以上方式繪制殘差曲線于圖3中。在圖3中,數據特征、誤差量級與圖2相同,使用完全修正方法得到速度精度要明顯高于使用簡化修正方法。

圖3 近地軌道中兩種修正方法與GPS測速殘差Fig.3 Speed correction residual errors of the simplified and complete correction methods and GPS in near-earth orbit
分別選取8架次的校飛數據、2次近地軌道數據和1次遠地軌道數據進行誤差統計,具體見表1. 表1顯示,完全修正的測速精度要遠高于簡化修正的測速數據。
對定軌情況的驗證,分別選取了2次近地軌道和1次遠地軌道進行,見表2、表3和表4.
從3次定軌結果來看,采用完整修正方法定出的軌道普遍比傳統方法要準確。就2次近地軌道結果來看,半長軸改進量約10 m;就1次遠地軌道結果來看,半長軸改進量約50 km.

表1 兩種修正方法與GPS測速殘差統計

表2 近地軌道段1定軌結果

表3 近地軌道段2定軌結果

表4 遠地軌道段定軌結果
20世紀建立的船載雷達測速修正方法由于提出時間較早,當時未考慮船體側向速度和深沉速度以及船體搖擺對天線運動速度造成的影響,簡化了修正公式,忽略了許多誤差項。本文就傳統修正方法展開分析,找出精度不足的主要原因,進而建立一種較完整的修正方法。該方法經過校飛數據和實戰數據檢驗,與傳統方法相比,能夠明顯改善目標速度測量的隨機誤差。定軌結果顯示,采用完整修正方法進行速度修正后定出的軌道普遍比傳統方法要準確。受條件限制,本文提出的模型在實際計算過程中,大量使用了微分平滑方法計算天線轉動角速度和船搖角速度。待設備測量體制完善后,還需要將設備直接測量得到的各種角速度信息代入模型,以之全面驗證模型的準確性。并且經修正后的單站高精度測速數據如何提高目標定位的準確性還需進一步研究。
References)
[1] 張斌,李佳潞,趙冬娥,等. 基于小波濾波及相關分析的激光光幕破片測速信號數據處理[J].兵工學報, 2016,37(3):489-495.
ZHANG Bin, LI Jia-lu, ZHAO Dong-e, et al. Signal processing of laser screen fragments velocity measurement based on wavelet transform and correlation analysis [J]. Acta Armamentarii, 2016,37(3):489-495. (in Chinese)
[2] 黃志仁,陳楸,何穎,等. 基于下視序列圖像的無人機測速方法[J]. 彈箭與制導學報,2014,34(2):172-174.
HUANG Zhi-ren, CHEN Qiu, HE Ying, et al. Velocity measurement of unmanned aerial vehicle based on sequential downward looking images [J]. Journal of Projectiles, Rockets, Missiles and Guidance,2014,34(2):172-174. (in Chinese)
[3] 宮志華,劉志學,冷雪冰,等. 一種光雷組合測量求取高精度彈丸切向速度方法[J]. 彈箭與制導學報,2015,35(6):119-122.
GONG Zhi-hua, LIU Zhi-xue, LENG Xue-bing, et al. A method of getting high precision ballistic tangential velocity based on united measuring with optical theodolite and radar [J]. Journal of Projectiles, Rockets, Missiles and Guidance,2015,35(6):119-122. (in Chinese)
[4] 李元生,陳禮國. 測速雷達使用新方法研究[J].指揮控制與仿真,2016,38(2):123-126.
LI Yuan-sheng, CHEN Li-guo. Research on new method of velocity radar [J]. Command Control & Simulation, 2016,38(2):123-126. (in Chinese)
[5] 朱偉康,李輝芬,陳德明,等. 提高航天測量船定軌精度的途徑[J].電訊技術,2012,52(5):658-662.
ZHU Wei-kang, LI Hui-fen, CHEN De-ming, et al. Ways to improve orbit determination precision of space TT&C ships [J].Telecommunication Engineering, 2012,52(5):658-662. (in Chinese)
[6] 鄭為民, 馬茂莉, 王文彬. 深空探測器被動式高精度多普勒測量方法與應用[J] .宇航學報,2013,34(11):1462-1467.
ZHENG Wei-min, MA Mao-li, WANG Wen-bin. High-precision passive Doppler measurement method and its applications in deep space explorater [J]. Journal of Astronautics, 2013,34(11):1462-1467. (in Chinese)
[7] 李曉勇, 張忠華. 船載外測設備測速數據的誤差修正[J]. 電訊技術,2006,46(5):131-135.
LI Xiao-yong, ZHANG Zhong-hua. Data of ship-borne exterior trajectory measurement equipment[J]. Telecommunication Engineering,2006,46(5):131-135. (in Chinese)
[8] 王亮. 雷達測速技術特點分析[J]. 赤峰學院學報:自然科學版,2012,28(19):66-67.
WANG Liang. Analysis on radar velocity measurement technology character [J]. Journal of Chifeng University: Natural Science Edition, 2012,28(19):66-67. (in Chinese)
[9] 潘良. 航天測量船船姿船位測量技術[M]. 北京:國防工業出版社,2009:16-30.
PAN Liang. Ship attitude and position measurement method for instrumentation ship [M]. Beijing: National Defense Industry Press, 2009:16-30. (in Chinese)
[10] 張忠華. 航天測量船船姿數據處理方法[M].北京:國防工業出版社,2009:112-125.
ZHANG Zhong-hua. Ship attitude data processing methods applied to space tracking ships [M]. Beijing: National Defense Industry Press,2009:112-125. (in Chinese)
[11] 胡紹林, 許愛華, 郭曉紅.脈沖雷達跟蹤測量數據處理技術[M]. 北京:國防工業出版社,2007:90-96.
HU Shao-lin, XU Ai-hua, GUO Xiao-hong. Data processing technology applied to pulse radar tracking[M]. Beijing: National Defense Industry Press, 2007: 90-96. (in Chinese)
ANewShipSpeedCorrectionMethodforMeasuredSpeedDatafromRadaronboardSpaceTTCShip
XIANG Jie, MAO Yong-xing, GUO Cai-fa
(China Satellite Maritime Tracking and Controlling Department, Jiangyin 214431, Jiangsu, China)
In traditional speed-measuring method correction method for measured data from radar onboard space tracking, telemetering and command (TTC) ship, the effects of ship waggling, heaving and lateral movement on speed of antenna are ignored. In the traditional method, only the course data and the ship speed data are used to calculate the speed of radar antenna relative to the earth. By analyzing the derivation process of the traditional method, it is found that some systematic errors are ignored, which are found in simplified formula. A speed-measuring correction method is established to eliminate these systematic errors. The proposed method contains two sub-models: inertia navigation platform speed model based on GPS velocity determination, and object speed correction model. The data accuracy and orbit determination are tested in checking flight, near-earth orbit task and far-earth orbit task. The result shows that the proposed speed correction method is superior to the traditional method in the aspect of eliminating random error.
information processing technology; ship speed correction; GPS; inertia navigation platform; flight check data; TTC ship
TN953+.1; TJ013.2
A
1000-1093(2017)11-2268-06
10.3969/j.issn.1000-1093.2017.11.025
2017-04-21
向頡(1982—), 男, 工程師,碩士。E-mail: xiangjie100@163.com