999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

膠質瘤干細胞表型維持機制研究進展

2018-01-05 03:03:54任東妮涂艷陽
轉化醫學電子雜志 2017年12期
關鍵詞:信號環境

任東妮,王 震,2,劉 楠,涂艷陽

(1第四軍醫大學唐都醫院實驗外科,陜西西安710038;2西安交通大學生命科學院,陜西西安710049)

膠質瘤干細胞表型維持機制研究進展

任東妮1,王 震1,2,劉 楠1,涂艷陽1

(1第四軍醫大學唐都醫院實驗外科,陜西西安710038;2西安交通大學生命科學院,陜西西安710049)

0 引言

腦膠質瘤(glioma)是最常見的原發性腦腫瘤,根據組織學標準由世界衛生組織(World Health Organization,WHO)按惡性程度的增高依次分為四個等級[1].膠質母細胞瘤(glioblastoma, GBM, WHO gradeⅣ)是惡性程度最高,死亡率最高的腫瘤[2].近年來對惡性膠質瘤的發病機制和治療研究取得了一定進展,制訂了根治性切除術,術后予以放療同步并序貫替莫唑胺(temozolomide,TMZ)化療的標準治療方案[3-5].盡管采用了嚴格的手術和藥物治療方法,患者的中位生存率仍只有 15~19個月[2,6].研究發現GBM中存在一個神經膠質瘤干細胞(glioma stem cells,GSCs)亞群,對化療和放療具有較強的抗性,表明GSCs可能是GBM治療失敗和高復發率的原因[7].GSCs被認為是膠質母細胞瘤治療的重要靶標,殺傷GSCs對于治療膠質母細胞瘤至關重要.臨床上,靶向GSCs的策略主要是通過靶向維持GSCs干性所需的細胞表面標志物和特異性途徑來直接殺傷GSCs.然而,另一種靶向膠質母細胞瘤的方法漸漸得到認可,即通過改變GSCs與其微環境相互作用的能力來特異性殺傷 GSCs[8-9].了解維持 GSCs 干性的分子通路以及與微環境相互作用的機制可以為膠質瘤的治療提供新的思路.

1 維持膠質瘤干細胞干性相關分子

GSCs具有不同的標志物(如CD133,nestin)和分子譜,包括配體、受體、細胞內信號分子、microRNA以及轉錄因子和染色質修飾蛋白(表1).盡管這些分子不能絕對的、單獨的表征干細胞表型,但它們對GSCs分離提供了重要篩選標志,對GSCs干細胞狀態和特性的維持發揮著不可或缺的作用.迄今為止,已經鑒定了許多標記物和分子對GSCs具有不同程度的特異性,并且對GSCs表型具有不同程度的影響.

表1 膠質瘤干細胞標志物以及GSCs表型維持相關分子

1.1 GSCs標志分子 GSCs和正常的神經干細胞(neural stem cells,NSCs)具有相似的神經干細胞標志物,如 CD133/prominin-1, Sox2 和 Nestin[10-11].過去十幾年的研究發現了許多其他的備選標志分子,包括 CD44[12], CD49f ( integrin a6)[13], Musashi[14],Nestin[15-16], Nanog[17-19], Oct4[20]和 Sox2[21-22].

CD133(prominin-1)是用于鑒定和分離惡性腦腫瘤中的癌干細胞的最早的干細胞表面標志物之一.然而,GBM分子研究結果中有許多CD133相關爭議.例如,有研究[23]認為 GSCs中 CD133表達水平的變化與腫瘤發生潛力沒有直接關系.研究[24-25]表明,從GBMs分離的CD133-腫瘤細胞在干細胞培養條件下也可以穩定地培養,類似于CD133+細胞,這些細胞還顯示出“干細胞”特性,例如體外的自我更新,不同程度的異種移植物模型中形成可移植腫瘤.進一步的表型分析顯示,與可以在培養物中形成浮游球體的CD133+細胞不同,CD133-細胞傾向于作為粘附球體生長.這一觀察結果提示CD133+和CD133-細胞可能源于不同的 GSCs[26].最近有報道[27]稱,少量的CD133-細胞可以產生CD133+細胞,這表明成球培養系統中,干細胞分級可能沒有體內相關性.然而,對于CD133生物學研究仍在持續增多,因為它已經被重復證明是GSCs維持和神經球形成所必需的[28],是對常規療法的抗性的良好指標.

1.2 microRNAs 已有研究[29-31]表明,microRNA(miRNA)參與膠質瘤的起始、發展、轉移,在GSCs的形成和維持中發揮重要作用.據報道許多miRNA在GBM中異常表達,在膠質母細胞瘤干細胞中起重要作用.

miR-9/9?,miR-17,miR-10b 和 miR-21 在人成膠質瘤細胞和組織中上調.miR-9/9?和miR-17的抑制導致神經球形成的減少,并刺激細胞分化.干細胞相關轉錄因子基因 SOX2已被證明是 miR-9?的靶點[32].此外,鈣調蛋白結合轉錄激活因子 1(CAMTA1)是 miR-9/9?和 miR-17 的靶標,可作為腫瘤抑制因子[33].據報道[34],miR-17 通過靶向 PTEN促進膠質母細胞瘤干性細胞的產生,PTEN調節膠質母細胞瘤干性細胞中的 PI3K/Akt和 STAT3信號轉導[35].

miR-34a,miR-124,miR-125b 和 miR-137 在 GBM中與正常腦組織相比下調.miR-34a的過表達導致膠質母細胞瘤干細胞分化增加,并抑制膠質母細胞瘤干細胞惡性增殖[36-37].miR-34a 直接抑制膠質母細胞瘤干細胞中c-Met,CDK,Notch-1和Notch-2的表達;Notch 是干細胞維持的關鍵調節因子[38-40],抑制Notch途徑可以降低GSCs的干細胞特性和放療抵抗性[41].細胞周期蛋白依賴性激酶(cyclin dependent kinases,CDK)對于調節細胞周期是必不可少的.CDK4/6形成的復合物對G1/S相變至關重要,CDK6的喪失將導致 G1/S轉換時細胞周期停滯[42].miR-124通過靶向SNAI2調節膠質母細胞瘤細胞的干性特征和侵襲性,過表達miR-124和敲低SNAI2能夠抑制CD133+細胞亞群神經球的形成,并降低干細胞標記物的表達,如 BMI1,Nanog 和 Nestin[43].據報道[44],致癌基因NRAS和PIM3都是miR-124的下游靶點.miRNA-137在膠質母細胞瘤中下調,通過靶向CDK6和RTVP-1抑制膠質母細胞瘤干細胞的干性[45-46].據報道[47],RTVP-1 可以降低 CXCR4 的表達,抑制shh-GLI Nang信號通路,從而抑制GSCs的自我更新.miR-218的過表達導致穩定表達miR-218的膠質母細胞瘤神經球的體積顯著減少,膠質母細胞瘤干細胞的自我更新能力降低.作為miR-218過表達的結果,膠質母細胞瘤神經球中的干細胞標志物如 CD133,SOX2,Nestin 和 Bmi1 的表達均降低[48].miR-218部分通過阻斷Bmi1相關途徑調節膠質瘤干細胞的干性[49].

2 與膠質瘤干細胞表型維持相關通路

GSCs中維持NSCs干性所需的許多信號通路均上調,增強了GSCs的干性以及異常細胞的存活,從而導致腫瘤發生[50-52].Notch, SHH (sonic hedgehog),血管內皮生長因子(vascular endothelial growth factor,VEGF),STAT3,Wnt和 BMP 信號通路對于調節GSC自我更新和分化非常重要.

2.1 Notch信號通路 在NSCs中,Notch信號調節細胞的增殖、分化、凋亡和細胞譜系決定[53-55].最近的研究[53]發現Notch信號傳導在GSCs中高度活躍,能夠制GSCs分化以及維持干細胞特性.Notch及其配體如Delta-like-1和Jagged-1的下調導致GSCs的致癌潛力降低,這表明Notch信號在GSCs的存活和增殖中具有重要作用[56-57].但 Notch信號通路參與GSCs維持調控的具體機制至今仍不清楚.有研究[12]提示Notch-1激活在GSCs的表型維持和增殖中起到重要作用.Notch-1信號通路激活 ERK,繼而通過Shh-Gli-Nanog調控網絡促進GSCs的自我更新.用小干擾RNA阻斷GSCs的Notch-1表達,GSCs增殖能力明顯下降,體外移植瘤明顯減小,動物模型的存活時間明顯延長[13].這些都說明 Notch-1信號通路的激活在GSCs的維持中起促進作用.在研究 GSCs與其周圍血管微環境的關系中,用GSIs阻斷Notch信號通路后,膠質瘤周圍的血管內皮缺失,GSCs神經球生長明顯受抑制,GSCs數量減少,功能受損[14],提示腫瘤周圍血管內皮在 Notch信號通路調節 GSCs自我更新中起重要作用,而其作用的發揮是通過提供Notch配體,激活含有Notch受體的GSCs,促進腫瘤血管周圍微環境形成,進而促進GSCs的自我更新和維持[15].至于內皮細胞表達Notch配體的機制,可能與GSCs分泌的VEGF促進內皮表達 Notch配體有關[16].

2.2 BMPs GSCs中的BMPs在引導星形膠質細胞分化從而抑制GSCs的致瘤性中發揮重要作用[58].具體來說,BMP-2通過引導星形膠質細胞分化減少GSCs增殖,并通過HIF-1α的不穩定使GSC對TMZ的敏感性增強[59-60].體內攝入 BMP-4能夠抑制腦腫瘤生長,導致死亡率降低[58].BMP拮抗劑 Gremlin1通過調節內源性BMP水平來抑制GSCs的分化,以維持GSC的自我更新和致瘤潛力[61].

2.3 Wnt/β-Catenin β-Catenin 是 GSCs 增殖和分化的關鍵因素[62].GSCs中Wnt信號傳導的異常活化導致腫瘤生長[63].FoxM1/β-Catenin 信號調節 c-Myc和其他Wnt靶基因的轉錄,導致膠質瘤的形成[64-65].此外,Wnt/β-Catenin信號調節PLAGL2的表達從而抑制 GSCs的分化,保持其干性[66].

2.4 EGFR信號通路 EGFR信號通路介導NSCs的增殖、遷移、分化和存活[67].EGFR 通過 β-連環蛋白的反式激活促進GSCs的增殖和腫瘤發生[68].此外,EGFR的過表達增加了GSCs的自我更新能力,從而誘導其致瘤潛能[69-70].

2.5 SHH信號通路 SHH信號在NSCs增殖、分化和存活中起關鍵作用[71].近來,有研究[72]表明,SHH途徑在GSCs中具有高度活性,通過調節干細胞基因來維持自我更新并誘導腫瘤發生.SHH配體在膠質母細胞瘤的神經球中表達,將SHH抑制劑環巴胺作用于膠質母細胞瘤衍生的神經球,能夠減少新的神經球形成,并且在SHH阻斷后,顱內注射膠質母細胞瘤不能在免疫缺陷小鼠體內形成腫瘤.抑制SHH信號能夠降低 GSCs自我更新和體內致瘤性[72-73].

2.6 STAT3通路 STAT3通路是通過上調TLR9表達來維持 GSCs 表型[74-75].Herrmann 等[76]報道了用CpG配體(CpG-ODN)刺激TLR9激活STAT3途徑信號能夠促進GSCs生長,而沉默 TLR9表達則抑制GSCs發展[76].

3 微環境與膠質瘤干細胞表型維持

在所有實體瘤中,高分級膠質瘤是血管化程度最高的一個.事實上,“微血管增生”是膠質母細胞瘤的一個特征.血管網絡的改變導致血流的紊亂,導致腫瘤組織中氧的供應無法滿足腫瘤的擴散,形成低氧或缺氧區,大部分的GSCs存在于這個區域[77].

膠質瘤干細胞需要特殊的微環境來維持“干性”,包括血管周圍和低氧區.這些微環境對于提高GSCs的干性,促進GSCs的侵襲和轉移具有重要作用.實驗研究[78-80]證實,GSCs 富集在腫瘤血管周圍的特定區域和壞死區域,后者與限制性氧水平相關.因此,GSCs與血管周圍/增生性微環境以及缺氧/周圍壞死性微環境相關,表現出共生關系.這些微環境在維持未分化的GSCs的干細胞狀態及其體內平衡方面發揮了重要作用.GSCs不僅利用微環境存活,而且通過與腫瘤的近端和遠端的各種組織成分的復雜相互作用積極形成這些微環境,從而參與復雜的雙向互作(圖 1).

圖1 血管周圍及周圍壞死性微環境模擬圖[81]

3.1 血管周圍增生性微環境 在血管周圍區域,GSCs富集,其中發現了大量區域性信號來促進干細胞表型[82].GSCs通常位于與毛細血管并行的內皮細胞(endothelial cells,ECs)附近,特別是在室管膜下層和海馬區[83-84].這些區域性信號包括一些分子、細胞、細胞外基質等的相互作用已有一些相關研究.

據報道[83],GSCs釋放高水平的促血管生成因子,如VEGF,促使新EC遷移到腫瘤并促進血管生成.此外,SHH被認為是通過激活HH信號通路促進GSCs特性獲得的ECs分泌的中樞可溶性因子之一.GSCs顯示出活躍的SHH-GLI1信號并調節GSCs自我更新和膠質瘤生長[73,85].成纖維細胞生長因子-2(fibroblast growth factor 2, FGF-2)有助于保持 GSCs的干性.當從GSCs細胞系中敲除FGF-2,導致GSCs分化;當細胞中存在這一生長因子時,則沒有觀察到這一點[86].FGF-2在C6膠質瘤細胞中能有效誘導巢蛋白(nestin)的表達,證明其對神經膠質瘤細胞的干性維持具有重要作用[87].FGF-2與EGF的自分泌生產也可能是維持GSCs自我更新潛力的原因[88].靶向FGF-2的治療方法可能有效地殺傷GSCs,因為生長因子對于維持 GSCs的干細胞特征很重要[89].骨橋蛋白(osteopontin)來源于血管周圍微環境,通過激活CD44促進GSCs表型,CD44是腫瘤干細胞(cancer stem cells,CSCs)的標志之一.CD44蛋白 C端胞內結構域通過提高缺氧誘導因子-2α(hypoxia inducible factor 2α, HIF-2α)的功能,對誘導 GSCs的特性至關重要[90].

血管微環境和GSCs之間的相互作用也涉及趨化因子及其受體.CXCR4是GSCs的生物標志物[91],其配體是CXCL12,由ECs和腫瘤微環境中的免疫細胞分泌[92],這突出了 CXCL12/CXCR4 軸在血管微環境中對于GSCs維持的重要性.

除上述分子外,GSCs可以直接刺激內皮細胞(endothelial cells, ECs)上 Notch 配體表達,ECs來源的一氧化氮(nitric oxide,NO)可以激活 GSCs中Notch信號通路和NO/cGMP/PKG信號,從而促進干細胞表型[93-94].

綜上所述,GSCs與血管周圍微環境之間存在雙向交互性,血管周圍微環境增強了GSCs的干細胞樣特性,促進了這些細胞的侵襲和轉移,使GSCs在治療中幸存.

3.2 缺氧及周圍壞死性微環境 缺氧促進GSCs自我更新、增殖以及致瘤性,并誘導非膠質瘤干細胞獲取干細胞特性[95].缺氧刺激缺氧誘導因子(hypoxiainducible factor,HIF)家族的表達,導致促血管生成生長因子的產生[83].因此,研究[96]認為,缺氧微環境在GSCs的維持和擴增中具有關鍵作用.Li等[80]首先報道了HIF通路參與GSCs調節.使用異種移植膠質瘤起始細胞,通過體外神經球形成測定和CD133表達,觀察到在缺氧環境下干細胞活性的顯著增強.當HIF-1α或HIF-2α被shRNA沉默時,在正常氧和缺氧環境下的干細胞活性降低.考慮到HIF-2α mRNA水平與神經膠質瘤活動、進展和預后相關,強調HIF-2α對膠質瘤干細胞活性至關重要.由于HIF-1α蛋白水平可能受到轉錄后調控,進而導致HIF-1α mRNA水平與干細胞活性之間缺乏相關性[97].

在人膠質母細胞瘤活檢中發現GSCs在周圍壞死區富集.GSCs具有較低的氧氣張力和激活的HIF-1α 和 HIF-2α[98].在體外培養中,缺氧情況下GSCs中的HIF-1α和HIF-2α上調.HIF-2α直接參與促進GSCs表型,而HIF-1α似乎在GSCs維持中不是至關重要的.此外,HIF-1α在GSCs和非GSCs細胞中均表達,而 HIF-2α 在 GSCs中特異性表達[80,98].值得注意的是,HIF-2α能夠特異性調節干細胞維持的信號通路的激活[99].

血管退化加劇了微環境缺氧,被認為是膠質瘤侵襲性提高的重要原因[100].此外,缺氧導致GSCs的富集,使其具有更高侵襲性表型.因此,在探索新的抗血管生成策略時,應考慮在不加重缺氧前提下如何減少過量血管.HIF-1α誘導的Notch通路的激活對缺氧介導的GSCs維持至關重要.HIF-1α的消耗或Notch信號的失活部分抑制缺氧介導的GSCs維持[101].

3.3 免疫微環境 研究[96]表明GSCs與免疫細胞有直接相互作用.腫瘤相關巨噬細胞(tumor-associated macrophages, TAM)主要位于微血管周圍[102]和缺氧區[103]的 CD133+GSC 附近,表明 GSCs和 TAM 之間有直接相互作用.在 GSCs的缺氧微環境中發現RAGE,COX2 和 NF-κB 等促炎基因的表達增強[104].與已分化的腫瘤細胞相比,GSCs顯示較強的趨化作用活性以及募集TAMs能力,該過程由趨化因子和生長因子介導,包括VEGF,神經絲氨酸,SDF1和可溶性集落刺激因子1(sCSF-1).免疫細胞產生的分子/細胞因子如 TGFβ,VEGF,SDF1,bFGF和 NO 已被證明可以維持和促進GSCs[95],推測特異性炎性細胞的原促癌功能是通過直接刺激GSCs進行調控的.雖然上述分子證明了GSCs在免疫細胞調控中的重要作用,但免疫細胞對GSC維持的影響仍知之甚少.

4 結語

GSCs亞群最初只是構成腫瘤的少部分,但這些細胞自我更新,并對放療和化療具有抵抗性,使得它們能夠持續存在,引起治療后復發.GSCs表達干性標志物CD133、nestin以及受一系列分子如miRNA調控,激活notch、Wnt、EGFR等信號通路,并與周圍增生血管、缺氧周圍壞死微環境相互作用,是其維持干細胞特性,抑制分化,增強自我更新以及放化療抵抗性和致瘤性的機制,為靶向GSCs治療膠質瘤,減少復發提供新的靶點和思路.新型治療方法應該破壞GSCs的保護性微環境、血管周圍、缺氧和免疫逃逸,以改善甚至改變目前對膠質瘤的診斷和治療.因此,GSCs微環境的有效控制可作為癌癥傳統治療方法的補充.

[1]Gladson CL, Prayson RA, Liu WM.The pathobiology of glioma tumors[J].Annu Rev Pathol,2010,5:33-50.

[2]Linz U.Commentary on Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phaseⅢ study:5-year analysis of the EORTC-NCIC trial(Lancet Oncol.2009; 10: 459-466)[J].Cancer,2010,116(8):1844-1846.

[3]Walker MD, Green SB, Byar DP, et al.Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery[J].N Engl J Med,1980,303(23):1323-1329.

[4]DeAngelis LM.Brain tumors[J].N Engl J Med,2001,344(2):114-123.

[5]Oike T, Suzuki Y, Sugawara K, et al.Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma:Japanese mono-institutional results[J].PLoS One,2013,8(11):e78943.

[6]Grossman SA,Batara JF.Current management of glioblastoma multiforme[J].Semin Oncol,2004,31(5):635-644.

[7]Bao S, Wu Q, Mclendon RE, et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J].Nature,2006,444(7120):756-760.

[8]Liebelt BD, Shingu T, Zhou X, et al.Glioma stem cells: signaling,microenvironment, and therapy[J].Stem Cells Int,2016,2016(18):7849890.

[9]Codrici E, Enciu AM, Popescu ID, et al.Glioma stem cells and their microenvironments: providers of challenging therapeutic targets[J].Stem Cells International,2016,2016:1-20.

[10]Singh SK, Clarke ID, Hide T, et al.Cancer stem cells in nervous system tumors[J].Oncogene,2004,23(43):7267-7273.

[11]Gangemi RM, Griffero F,Marubbi D,et al.SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity[J].Stem Cells,2009,27(1):40-48.

[12]Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, et al.TGF-β receptor inhibitors target the CD44 high/Id1 high, glioma-initiating cell population in human glioblastoma[J].Cancer Cell,2010,18(6):655-668.

[13]Lathia JD,Gallagher J,Heddleston JM,et al.Integrin alpha 6 regulates glioblastoma stem cells[J].Cell Stem Cell,2010,6(5):421-432.

[14]Thon N, Damianoff K, Hegermann J, et al.Presence of pluripotent CD133+, cells correlates with malignancy of gliomas[J].Mol Cell Neurosci,2010,43(1):51-59.

[15]Bexell D, Gunnarsson S, Siesj? P, et al.CD133+ and nestin+ tumor-initiating cells dominate in N29 and N32 experimental gliomas[J].Inter J Cancer,2009,125(1):15-22.

[16]Zhang M, Song T, Yang L, et al.Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients[J].J Exp Clin Cancer Res,2008,27:85.

[17]Guo Y, Liu S, Wang P, et al.Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas[J].Histopathology,2011,59(4):763-775.

[18]Mathieu J, Zhang Z, Zhou W, et al.HIF induces human embryonic stem cell markers in cancer cells[J].Cancer Res,2011,71(13):4640-4652.

[19]Niu CS, Li DX, Liu YH, et al.Expression of NANOG in human gliomas and its relationship with undifferentiated glioma cells[J].Oncol Rep,2011,26(3):593-601.

[20]Ikushima H, Todo T, Ino Y, et al.Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein[J].J Biol Chem,2011,286(48):41434-41441.

[21]Ge Y, Zhou F, Chen H, et al.Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells[J].Biochem Biophys Res Commun,2010,397(4):711-717.

[22]H?gerstrand D, He X, Bradic Lindh M, et al.Identification of a SOX2-dependent subset of tumor-and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile[J].Neuro Oncol,2011,13(11):1178-1191.

[23]Gambelli F, Sasdelli F, Manini I, et al.Identification of cancer stem cells from human glioblastomas:growth and differentiation capabilities and CD133/prominin-1 expression [ J].Cell Biol Int,2012,36(1):29-38.

[24]Beier D, Hau P, Proescholdt M, et al.CD133(+) and CD133(-)glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles[J].Cancer Res,2007,67(9):4010-4015.

[25]Joo KM,Shi YK,Jun X,et al.Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas[J].Lab Invest,2008,88(8):808-815.

[26]Yang T, Rycaj K.Targeted therapy against cancer stem cells[J].Oncol Lett,2015,10(1):27-33.

[27]Chen R,Nishimura MC, Bumbaca SM,et al.A hierarchy of self-renewing tumor-initiating cell types in glioblastoma[J].Cancer Cell,2010,17(4):362-375.

[28]Brescia P, Ortensi B, Fornasari L, et al.CD133 is essential for glioblastoma stem cell maintenance[J].Stem Cells,2013,31(5):857-869.

[29]Huang Z, Cheng L, Guryanova OA, et al.Cancer stem cells in glioblastoma--molecular signaling and therapeutic targeting[J].Protein Cell,2010,1(7):638-655.

[30]Zhang Y,Dutta A,Abounader R.The role of microRNAs in glioma initiation and progression[J].Front Biosci(Landmank Ed),2012,17:700-712.

[31]Wang W, Dai LX, Zhang S, et al.Regulation of epidermal growth factor receptor signaling by plasmid-based microRNA-7 inhibits human malignant gliomas growth and metastasis in vivo[J].Neoplasma,2013,60(3):274-283.

[32]Jeon HM,Sohn YW,Oh SY,et al.ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9?-mediated suppression of SOX2[J].Cancer Res,2011,71(9):3410-3421.

[33]Schraivogel D, Weinmann L, Beier D, et al.CAMTA1 is a novel tumour suppressor regulated by miR-9/9?in glioblastoma stem cells[J].Embo J,2011,30(20):4309-4322.

[34]Li H, Yang BB.Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2[J].Oncotarget,2013,3(12):1653-1668.

[35]Moon SH, Kim DK, Cha Y, et al.PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer, stem cell population,proliferation and senescence in a glioblastoma cell line[J].Inter J Oncol,2013,42(3):921-928.

[36]Li Y, Guessous F,Zhang Y,et al.MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes[J].Cancer Res,2009,69(19):7569-7576.

[37]Guessous F, Zhang Y, Kofman A, et al.microRNA-34a is tumor suppressive in brain tumors and glioma stem cells[J].Cell Cycle,2010,9(6):1031-1036.

[38]Fan X, Khaki L, Zhu TS, et al.NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts[J].Stem Cells,2010,28(1):5-16.

[39]Zhen Y, Zhao S, Li Q, et al.Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas[J].Cancer Lett,2010,292(1):64-72.

[40]Fan X,Matsui W,Khaki L,et al.Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J].Cancer Res,2006,66(15):7445-7452.

[41]Wang J, Wakeman TP, Lathia JD, et al.Notch promotes radioresistance of glioma stem cells[J].Stem cells,2010,28(1):17-28.

[42]Chen SM, Chen HC, Chen SJ, et al.MicroRNA-495 inhibits proliferation of glioblastoma multiforme cells by downregulating cyclin-dependent kinase 6[J].World J Surg Oncol,2013,11:87.

[43]Xia H, Cheung WK, Ng SS, et al.Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells[J].J Biol Chem,2012,287(13):9962-9971.

[44]Sun L, Yan W, Wang Y, et al.MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10[J].Brain Res,2011,1389:9-18.

[45]Bier A,Giladi N,Kronfeld N,et al.MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1[J].Oncotarget,2013,4(5):665-676.

[46]Silber J, Lim DA, Petritsch C, et al.miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells[J].BMC Med,2008,6:14.

[47]Fareh M,Turchi L,Virolle V,et al.The miR 302-367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network [ J].Cell Death Differ, 2012,19(2):232-244.

[48]Tu Y, Gao X, Li G, et al.MicroRNA-218 inhibits glioma invasion,migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1[J].Cancer Res,2013,73(19):6046-6055.

[49]Gao X,Jin W.The emerging role of tumor-suppressive microRNA-218 in targeting glioblastoma stemness[J].Cancer Lett,2014,353(1):25-31.

[50]Hemmati HD, Nakano I, Lazareff JA, et al.Cancerous stem cells can arise from pediatric brain tumors[J].Pro Natl Acad Sci U S A,2003,100(25):15178-15183.

[51]Rich JN, Eyler CE.Cancer stem cells in brain tumor biology[J].Cold Spring Harb Symp Quant Biol,2008,73:411-420.

[52]Vescovi AL, Galli R, Reynolds BA.Brain tumour stem cells[J].Nat Rev Cancer,2006,6(6):425-436.

[53]Artavanis-Tsakonas S, Rand MD, Lake RJ.Notch signaling: cell fate control and signal integration in development[J].Science,1999,284(5415):770-776.

[54]Beatus P, Lendahl U.Notch and neurogenesis[J].J Neurosci Res,1998,54(2):125-136.

[55]Lasky JL, Wu H.Notch signaling, brain development, and human disease[J].Pediatr Res,2005,57(5 Pt 2):104R-109R.

[56]Kanamori M,Kawaguchi T,Nigro J M,et al.Contribution of Notch signaling activation to human glioblastoma multiforme[J].J Neurosurg,2007,106(3):417-427.

[57]Purow BW,Haque RM,Noel MW,et al.Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation[J].Cancer Res,2005,65(6):2353-2363.

[58]Piccirillo SG, Reynolds BA, Zanetti N, et al.Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells[J].Nature,2006,444(7120):761-765.

[59]Pistollato F, Chen HL, Rood BR, et al.Hypoxia and HIF-1α repress the differentiative effects of BMPs in high-grade glioma[J].Stem cells,2009,27(1):7-17.

[60]Persano L, Pistollato F, Rampazzo E, et al.BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression[J].Cell Death Dis,2012,3:e412.

[61]Yan K, Wu Q, Yan DH, et al.Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy[J].Genes Dev,2014,28(10):1085-1100.

[62]Atkins RJ, Dimou J, Paradiso L, et al.Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas[J].J Clin Neurosci,2012,19(11):1558-1563.

[63]Hatten ME, Roussel MF.Development and cancer of the cerebellum[J].Trends Neurosci,2011,34(3):134-142.

[64]Bowman A, Nusse R.Location, location, location: FoxM1 mediates β-catenin nuclear translocation and promotes glioma tumorigenesis[J].Cancer Cell,2011,20(4):415-416.

[65]Zhang N, Wei P, Gong A, et al.FoxM1 promotes β-catenin nuclear localization and controls wnt target-gene expression and glioma tumorigenesis[J].Cancer Cell,2011,20(4):427-442.

[66]Zheng H, Ying H, Wiedemeyer R, et al.PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas[J].Cancer Cell,2010,17(5):497-509.

[67]Ayuso-Sacido A, Moliterno JA, Kratovac S, et al.Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells[J].J Neurooncology,2010,97(3):323-337.

[68]Yang W, Xia Y, Ji H, et al.Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation[J].Nature,2011,480(7375):118-122.

[69]Ayuso-Sacido A, Graham C, Greenfield JP, et al.The duality of epidermal growth factor receptor(EGFR) signaling and neural stem cell phenotype: cell enhancer or cell transformer[J].Curr Stem Cell Res Ther,2006,1(3):387-394.

[70]Sun Y, Goderie SK, Temple S.Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells[J].Neuron,2005,45(6):873-886.

[71]Agarwala S,Sanders TA,Ragsdale CW.Sonic Hedgehog Control of Size and Shape in Midbrain Pattern Formation[J].Science,2001,291(5511):2147-2150.

[72]Bar EE, Chaudhry A, Lin A, et al.Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma[J].Stem Cells,2007,25(10):2524-2533.

[73]Clement V, Sanchez P, de Tribolet N, et al.HEDGEHOG-GLI1 signaling regulates human glioma growth,cancer stem cell self-renewal, and tumorigenicity[J].Curr Biol,2007,17(2):165-172.

[74]Guryanova OA, Wu Q, Cheng L, et al.Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3[J].Cancer Cell,2011,19(4):498-511.

[75]Kortylewski M,Kujawski M,Herrmann A,et al.Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy[J].Cancer Res,2009,69(6):2497-2505.

[76]Herrmann A, Cherryholmes G, Schroeder A, et al.TLR9 is critical for glioma stem cell maintenance and targeting[J].Cancer Res,2014,74(18):5218-5228.

[77]Fidoamore A, Cristiano L, Antonosante A, et al.Glioblastoma stem cells microenvironment:the paracrine roles of the niche in drug and radioresistance[J].Stem Cells Int,2016,2016:6809105.

[78]Lathia JD, Gallagher J, Myers JT, et al.Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells[J].PloS One,2011,6(9):e24807.

[79]Calabrese C,Poppleton H,Kocak M,et al.A perivascular niche for brain tumor stem cells[J].Cancer Cell,2007,11(1):69-82.

[80]Li Z,Bao S,Wu Q,et al.Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells[J].Cancer Cell,2009,15(6):501-513.

[81]Mack SC, Hubert CG, Miller TE, et al.An epigenetic gateway to brain tumor cell identity[J].Nat Neurosci,2016,19(1):10-19.

[82]Christensen K, Schr?der HD, Kristensen BW.CD133+ niches and single cells in glioblastoma have different phenotypes[J].J Neurooncology,2011,104(1):129-143.

[83]Jain RK, Tomaso ED, Dan GD, et al.Angiogenesis in brain tumours[J].Nat Rev Neurosci,2007,8(8):610-622.

[84]Carmeliet P, Jain RK.Angiogenesis in cancer and other diseases[J].Nature,2000,407(6801):249-257.

[85]Ulasov IV, Nandi S,Dey M,et al.Inhibition of sonic hedgehog and notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy[J].Mol Med,2011,17(1-2):103-112.

[86]Pollard SM,Yoshikawa K, Clarke ID,et al.Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens[J].Cell Stem Cell,2009,4(6):568-580.

[87]Chang KW, Huang YL, Wong ZR, et al.Fibroblast growth factor-2 up-regulates the expression of nestin through the Ras-Raf-ERK-Sp1 signaling axis in C6 glioma cells[J].Biochem Biophys Res Commun,2013,434(4):854-860.

[88]Li G, Chen Z, Hu YD, et al.Autocrine factors sustain glioblastoma stem cell self-renewal[J].Oncology Rep,2009,21(2):419-424.

[89]Haley EM,Kim Y.The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture[J].Cancer Lett,2013,346(1):1-5.

[90]Pietras A, Katz AM, Ekstr?m EJ, et al.Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth[J].Cell Stem Cell,2014,14(3):357-369.

[91]Zheng X, Xie Q, Li S, et al.CXCR4-positive subset of glioma is enriched for cancer stem cells[J].Oncol Res,2011,19(12):555-561.

[92]Würth R, Bajetto A, Harrison JK, et al.CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment[J].Front Cell Neurosci,2014,8:144.

[93]Charles N, Ozawa T, Squatrito M, et al.Perivascular nitric oxide activates notch signaling and promotes stem-like character in pdgfinduced glioma cells[J].Cell Stem Cell,2010,6(2):141-152.

[94]Eyler CE, Wu Q, Yan K, et al.Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2[J].Cell,2011,146(1):53-66.

[95]Heddleston JM, Li Z, Mclendon RE, et al.The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J].Cell Cycle,2009,8(20):3274-3284.

[96]Filatova A, Acker T, Garvalov BK.The cancer stem cell niche(s):the crosstalk between glioma stem cells and their microenvironment[J].Biochim Biophys Acta,2013,1830(2):2496-2508.

[97]Peng G,Liu Y.Hypoxia-inducible factors in cancer stem cells and inflammation[J].Trends Pharmacol Sci,2015,36(6):374-383.

[98]Yang L, Lin C, Wang L, et al.Hypoxia and hypoxia inducible factors in glioblastoma multiforme progression and therapeutic implications[J].Exp Cell Res,2012,318(19):2417-2426.

[99]Holmquistmengelbier L, Fredlund E, L?fstedt T, et al.Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype[J].Cancer Cell,2006,10(5):413-423.

[100]Mackey TK, Cuomo R, Guerra C, et al.After counterfeit Avastin?--what have we learned and what can be done[J].Nat Rev Clin Oncol,2015,12(5):302-308.

[101]Qiang L, Wu T, Zhang HW, et al.HIF-1α is critical for hypoxiamediated maintenance of glioblastoma stem cells by activating Notch signaling pathway[J].Cell Death Differ,2012,19(2):284-294.

[102]Yi L, Xiao H, Xu M, et al.Glioma-initiating cells: A predominant role in microglia/macrophages tropism to glioma[J].J Neuroimmunol,2011,232(1-2):75-82.

[103]Wang SC, Hong JH, Hsueh C, et al.Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model[J].Lab Invest,2012,92(1):151-162.

[104]Tafani M,Di Vito M,Frati A,et al.Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma[J].J Neuroinflammation,2011,8:32.

Advances in phenotypic maintenance of glioma stem cells

REN Dong-Ni1, WANG Zhen1,2, LIU Nan1, TU Yan-Yang11Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China;2Department of Biology, Xi'an Jiaotong University, Xi'an 710049, China

Glioma stem cells (GSCs) have the characteristics of self-renewal, the formation of neurospheres, the expression of stem cell markers, multi-directional differentiation, higher invasion,radiotherapy and chemotherapy resistance,and these characteristics are considered to be the main cause of glioma recurrence.As a relevant target for glioblastoma therapy,the elimination of GSCs is crucial in treating glioblastoma.The strategy to target GSCs therapeutically is mainly focused on the direct ablation of GSCs by targeting cell surface markers and specific pathways that are required for maintaining GSCs stemness.However, it has been increasingly acknowledged that another way to specifically target GSCs is to alter the ability of GSCs to interact with their microenvironments.GSCs exist in specific niches (perivascular/proliferative niche and hypoxic/perinecrotic niche) that play a role in enhancing the stem-like features of GSCs,promoting invasion and metastasis of GSCs, and even making GSCs survive.Recognition of these mechanisms has opened doors for targeting GSCs.

glioma stem cells; Notch signaling; stemness markers; hypoxic niche; perivascular niche

膠質瘤干細胞(GSCs)具有自我更新、形成神經球、表達干細胞標志物、多向分化、較高侵襲力、放化療抵抗等特性,這些特性被認為是膠質瘤復發的主要因素.GSCs作為膠質瘤治療的重要靶標,主要是通過抑制維持GSC干性所需的細胞表面標志物的表達以及阻斷相關特異性分子通路,從而減少GSCs增殖,促進其分化,降低其致瘤性來殺傷GSCs.近年來,GSCs與其所處的血管周圍/增生性微環境以及缺氧/周圍壞死性微環境的相互作用逐漸被關注.研究發現血管周圍微環境及壞死周圍缺氧區域中,存在一些分子和細胞,通過分子信號轉導機制,增強GSCs的干細胞樣特性,促進了這些細胞的侵襲和轉移,使GSCs在治療中幸存.因此深入了解這一機制,破壞這些微環境,尋找新的靶點,可以為膠質瘤的治療開辟一條新的路徑.

膠質瘤干細胞;Notch信號;干性標記物;缺氧微環境;血管微環境

R739.41

A

2095-6894(2017)12-57-07

2017-05-05;接受日期:2017-05-18

國家自然科學基金(81572983,81272419);陜西省社會發展科技攻關項目(2015SF027);唐都醫院創新發展基金資助項目(2016JCYJ013)

任東妮.碩士.研究方向:膠質瘤治療.E-mail:rendongni123@ 163.com

涂艷陽.博士,副主任醫師,副教授.E-mail:tu.fmmu@ gmail.com

猜你喜歡
信號環境
長期鍛煉創造體內抑癌環境
一種用于自主學習的虛擬仿真環境
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
孕期遠離容易致畸的環境
不能改變環境,那就改變心境
孩子停止長個的信號
環境
孕期遠離容易致畸的環境
基于LabVIEW的力加載信號采集與PID控制
主站蜘蛛池模板: 91青青视频| 试看120秒男女啪啪免费| 免费一级全黄少妇性色生活片| аⅴ资源中文在线天堂| 精品无码一区二区三区在线视频| 免费无遮挡AV| 国产欧美中文字幕| 一本无码在线观看| 亚洲欧美色中文字幕| 亚洲精品无码AⅤ片青青在线观看| 国产呦精品一区二区三区网站| 在线播放91| 国产欧美另类| 亚洲 日韩 激情 无码 中出| 国产浮力第一页永久地址| 日韩在线视频网站| 亚洲Av激情网五月天| 影音先锋亚洲无码| 久久伊人色| 亚洲AV无码久久精品色欲| 亚洲国产精品不卡在线| 凹凸国产分类在线观看| 免费一级大毛片a一观看不卡| 最新国产精品第1页| 国产精品毛片在线直播完整版| 玖玖免费视频在线观看| 日本人又色又爽的视频| 国产熟女一级毛片| 四虎影视8848永久精品| 白浆免费视频国产精品视频| 丰满人妻被猛烈进入无码| 久久综合丝袜长腿丝袜| 国产黄色爱视频| 国产福利影院在线观看| 免费看久久精品99| 国产精品视频a| www.99在线观看| 亚洲精品国偷自产在线91正片| 日韩第一页在线| 国产小视频a在线观看| 国产精品熟女亚洲AV麻豆| 国产在线一区视频| 欧美区国产区| 欧美激情网址| 亚洲av无码久久无遮挡| 沈阳少妇高潮在线| 久久精品国产免费观看频道| 亚洲色图在线观看| 国产在线八区| 日韩精品无码免费专网站| 国模极品一区二区三区| 日本午夜视频在线观看| av无码久久精品| 成人在线不卡| 亚洲区视频在线观看| 特级做a爰片毛片免费69| 国产视频一区二区在线观看| 国产高颜值露脸在线观看| 免费a在线观看播放| 亚洲成AV人手机在线观看网站| 欧美福利在线观看| 国产一在线| 国产一二三区在线| 精品视频一区在线观看| 午夜国产精品视频| 亚洲欧洲日韩国产综合在线二区| 亚洲精品va| 亚洲欧美另类色图| 污污网站在线观看| 亚洲黄网在线| 国产极品粉嫩小泬免费看| 日韩精品一区二区三区免费| 福利国产微拍广场一区视频在线 | 欧美成人午夜在线全部免费| 黄色免费在线网址| 欧美黑人欧美精品刺激| 人人看人人鲁狠狠高清| 日韩一二三区视频精品| 亚洲国产欧洲精品路线久久| 午夜激情福利视频| 日本午夜精品一本在线观看| 精品福利视频网|