999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The value of dual mean Minksowski measure of symmetry at the critical Minkowski points of a convex body

2018-03-21 06:41:58LIUJianguoGUOQi
關鍵詞:能力

LIU Jianguo,GUO Qi

(School of Mathematics and Physics,SUST,Suzhou 215009,China)

1 Introduction

Let C?Rn(the n-dimensional Euclidean space) be a convex body(i.e.a compact convex set with non-empty interior).Denote bythe determining family of C,i.e.[1]

One of the important geometric invariants of convex bodies,the Minkowski measure function of asymmetry as∞(·),is defined by

where “int” denotes the interior(the definition of this form is from[1],see[2-4]for other equivalent definitions),and the Minkowski measure of asymmetry as∞(C) of C is so defined as

A point x*∈int C such that as∞(x*)=as∞(C) is called a ∞-critical point (or Minkowski-critical point by other authors).The set of all∞-points of C is called the ∞-critical set of C,denoted by C∞,which is a nonempty closed convex subset of C[2-3].Given x*∈C∞,an f*∈Ca[0,1]satisfying f*(x*) =intf∈Caf(x*) (in turn as∞(C)=[0,1](1-f*(x*))/f*(x*)) is called a critical function of C with respect to x*(w.r.t.for brevity).Denote by C*∞(x*) the set of critical functions of C w.r.t.x*(in general C*∞(x*) varies as x*varies).Observe that,for any f*∈C*∞(x*),

There are numerous generalizations,extensions of the Minkowski measures (see[8-11]and the references therein),among which Toth's work in[6],Guo and Toth's work in[7]are of particular value.The measures they defined provide information not only for the convex bodies themselves but also for their low dimensional sections or orthogonal projections.

Given a convex body C∈Kn(the family of convex bodies),for each m≥1,we call a multi-set{f0,…,fm}?Ca[0,1](repetitions are allowed) an m-support configuration of C i{fi≤0}=?,where{fi≤0}:={x∈Rn|fi(x)≤0}.The family of m-support configurations of C is denoted byEom=ECo,m.Then we have the following definition[7,12].

Definition 1Let C∈Kn.For m≥1,its m-th dual mean Minkowski measure fucntionint C→Ris defined by

A point x*∈int C satisfyingis called a σom-critical point of C.Denote by Comthe set of-critical points of C.It is easy to check that Comis a closed convex subset of C[7].

Both ∞-critical points and σon-critical points are of some interesting properties[3,13].So it is meaningful to provide methods in finding these critical points.There are already some practical criterions for detecting the∞-critical points,however,there are not many for the σom-critical points.Fortunately,some clues lead to a Conjec-ture:for any C∈Kn,

This conjecture is still open.One of the important steps for confirming this conjecture is to find the precise value of σonat the ∞-critical points.So,in this paper,we give explicit value of σonat the∞-critical points in terms of the Minkowski measure of asymmetry.

For notation and terms unmentioned above we refer to[14-15].

2 Critical n-support configurations

In this section,we focus on the nth dual mean Minkowski measures and show the existence of some particular n-support configurations.

Definition 2Let C∈Knand x*∈C∞.If{f0,…,fn}∈Eonsatisfies fi∈C*∞(x*),then{f0,…,fn}is called a critical n-support configuration of C (w.r.t.x*).

The following is the main result of this section.

Theorem 1Let C∈Kn.For each x*∈C∞,there is at least one critical n-support configuration w.r.t.x*.

To prove Theorem 1,some more preparations are needed.First,we rewrite (3.1) and (3.2) in[3]as one lemma with our notation.

Lemma 1[3]Let C∈Knand x*∈C∞.Then

To see Lemma 1 is indeed equivalent to (3.1) and (3.2) in[3],one needs only to observe that a closed half space G belongs to the family W appearing in[3]iff G={f≤0}for some f∈C*∞(x*).

Then,we show a theorem of Helly's type for families of half spaces,which,besides being needed in the proof of Theorem 1,is of its own significance.Some notation and terminologies first:recall that a function f:Rn→Ris affine iff there is a unique (u,b)∈Rn×Rsuch that f(·)=〈u,·〉+b and that f is invertible iff u≠o,where “o” denotes the origin or zero vector.A family{fi}i∈Λwith fi(·)=〈ui,·〉+bi,where Λ is any nonempty index set,is called compact if{(ui,b)}i∈Λis compact inRn×R.

Theorem 2Given C∈Kn.Let{fi=〈ui,·〉+bi}i∈Λ?Ca[0,1]be compact.Then,the following statements are equivalent:

(2)For each u∈Rn,〈ui,u〉≤0 for some i∈Λ.

(3)The origin o∈ri(conv{ui0,…,uil}for some afinely independent ui0,…,uil,1≤l≤n,i.e.,there are positive

(4)cone{ui0,…,uil}=lin{ui0,…,uil}for some afinely independent ui0,…,uil,1≤l≤n.

Lemma 2Let fi(·)=〈ui,·〉+bi,i=0,1,…,m be non-trivial affine functions.Then,for any (um+1,bm+1)∈cone{(u0,b0),…,(um,bm)},we have

Proof.,then the equality is obvious.If,then this is just a reformulation of the well-known generalized Farkas lemma[15].

Proof of Theorem 2We point out first that{(ui,bi)}i∈Λ?Rn×Ris compact iff both {ui}?Rnand{bi}?R are compact.

(2) ? (3):Consider the linear space V:=cone{ui}i∈Λ∩(-cone{ui}i∈Λ).If V={0},then by the separation theorem for closed cones (cone{ui}i∈Λis closed since{ui}i∈Λis compact),there is u∈Rnsuch that{ui}i∈Λ∈{x|〈u,x〉>0},which contradicts (2).So dimV≥1.Now,it's easy to see by induction that V=cone{ui0,…,uis}for some ui0,…,uis(1≤s≤n).

Thus,since-ui0∈lin{uis}sk=0=cone{uis}sk=0,we have-ui0=α0′ui0+,which leads to o=We now let l be the smallest positive integer such that

for some ui0,…,uilwith αik>0 and claim that ui0,…,uilare affinely independent.Suppose ui0,…,uilare not affinely independent,thenfor some (not all zero) βi0,…,βilwith

2.1.1 磷酸氫二鉀用量對多酚提取率的影響 在磷酸氫二鉀乙醇雙水相中,下相由溶解后的磷酸氫二鉀及少量乙醇構成,上相則由乙醇和水構成,易溶于乙醇相的多酚提取出后進入上相.雙水相的形成是磷酸氫二鉀與乙醇爭奪水分子的過程.隨著磷酸氫二鉀用量的增加,鹽對水的束縛能力增強,使上相中乙醇的相對體積分數增加[5].從圖2可以看出,隨著磷酸氫二鉀用量的增加,總多酚得率先上升后下降,磷酸氫二鉀過少,雙水相萃取能力低,磷酸氫二鉀過多導致多酚進入下相造成損失;在磷酸氫二鉀2.5 g時,多酚的提取率達到最高值.

then

where αik+λβik≥0,(0≤k≤l-1),and at least one of them is positive,a contradiction to the choice of l.It follows from (**) that

l≤n clearly since ui0,…,uilare affinely independent.

(3)?(4):Suppose that ui0,…,uil,l≤n,are affinely independent and 0∈ri(conv{ui0,…,uil}),i.e.,with αik>0.Then for each 0≤k≤l,we have-uikuij∈cone{ui0,…,uil}.Thus lin{ui0,…,uil}=cone{ui0,…,uil}.

(4)?(1):Suppose lin{ui0,…,uil}=cone{ui0,…,uil}with affinely independent ui0,…,uilfor some 1≤l≤n,with at least one αijpositive.Thus,settingby Lemma 2 we have

where we used the fact that{fi0≤0}∩{fil+1≤0}=? since{fil+1≤0}?{fi0>0}which follows from that

Lemma 3Let C∈Knand x*∈C∞.Then both Ca[0,1]and C*∞(x*) are compactly located.

Proof.It was shown that Ca[0,1]is compact (Lemma 1 in[1]).So we need only to show that C*∞(x*) is closed.Let the sequenceThen f∈Ca[0,1]by the closedness of Ca[0,1]and which implies f∈C*∞(x*)and so C*∞(x*)is closed.

Proof of Theorem 1First,by Lemma 1,Then,since C*∞(x*) is compact by Lemma 3,the origin o∈ri(conv{ui0,…,uil}) for some affinely independent ui0,…,uil,1≤l≤n by (1)?(3) in Theorem 2,where fij(·):=〈uij,·〉+bij∈C*∞(x*) for some bij∈R.Now,by applying (3)?(1) in Theorem 2 to the family{fij}lj=0,we haveObserving l≤n,we finally obtainfor any fil+1,fil+2,…,fin∈C*∞(x*),i.e.{fi0,…,fil,fil+1,…,fin}is a critical n-support configuration.

3 Main theorem and its proof

In this section,we present our main result:

Theorem 3Let C∈Knand x*∈C∞.Then we have

Proof.On one hand,for any n-support configuration{f0,f1,…,fn}∈Eon,fixing an f*∈C*∞(x*),we have by(*) in Section 1,

Thus

On the other hand,there is a critical n-support configuration{f0*,f1*,…,fn*}by Theorem 2.Thus we have

[1]GUO Q.Stability of the Minkowski measure of asym

[2]GRüNBAUM B.Measures of symmetry for convex set[J].Convexity Proceedings of Symposia in Pure Mathematics,1963,7:233-270.

[3]KLEE V L.The critical set of a convex set[J].Amer J Math,1953,75:178-188.

[4]GUO Q,KAIJSER S.On asymmetry of some convex bodies[J].Discrete Comput Geom,2002,27:239-247.

[5]HIRIART-URRUTY J B,LEMARéCHAL C.Fundamentals of Convex Analysis[M].Berling-Heidelberg-New York:Springer Verlag,2001.

[6]TOTH G.Simplicial intersections of a convex set and moduli for spherical minimal immersions[J].The MichiganMathematical Journal,2004,52(2):341-359.

[7]GUO Q,TOTH G.Dual mean Minkowski measures of symmetry for convex bodies[J].Science China:Mathematics,2016,59(7):1383-1394.

[8]TOTH G.Measures of symmetry for Convex Sets and Stability[M].New York:Springer,2015.

[9]GUO Q.On p-measures of asymmetry for convex bodies[J].Adv Geom,2012,12:287-301.

[10]GROEMER H.Stability theorems for two measures of symmetry[J].Discrete Comput Geom,2000,24:301-311.

[11]GROEMER H,WALLEN L J.A measure of asymmetry for domains of constant width[J].Beitrage Algebra Geom,2001,42:517-521.

[12]YAO D,GUO Q.Measures of asymmetry dual to mean Minkowski measures of asymmetry for convex bodies[J].Comm Math Res,2016,32(3):207-216.

[13]GUO Q,TOTH G.Dual mean Minkowski measures and the Grüunbaum conjecture for affine diameters[J].Pacific Journal of Mathematics,2018,292(1):117-137.

[14]SCHNEIDER R.Convex Bodies:The Brunn-Minkowski Theory[M].2th ed.Cambridge:Cambridge University Press,2014.

[15]HIRIART-URRUTY J B,LEMARéCHAL C.Fundamentals of Convex Analysis[M].New York:Springer Verlag,2001.

猜你喜歡
能力
消防安全四個能力
“一元一次不等式組”能力起航
培養觀察能力
幽默是一種能力
加強品讀與表達,提升聽說讀寫能力
培養觀察能力
會“吵架”也是一種能力
大興學習之風 提升履職能力
人大建設(2018年6期)2018-08-16 07:23:10
能力提升篇
你的換位思考能力如何
主站蜘蛛池模板: 国产福利2021最新在线观看| 婷婷综合色| 青青草原国产| 国产精品一线天| 尤物在线观看乱码| 亚洲国产精品无码久久一线| 日韩精品专区免费无码aⅴ| 永久免费AⅤ无码网站在线观看| 成人免费视频一区二区三区| 国产v精品成人免费视频71pao| 欧美成人午夜视频免看| 亚洲综合九九| 日本黄色不卡视频| 日韩不卡高清视频| 婷婷六月综合| 国产高清在线丝袜精品一区| 中国毛片网| 全午夜免费一级毛片| 免费啪啪网址| 国产情侣一区| 国产一在线| 一级毛片免费高清视频| 成人免费网站久久久| 国产婬乱a一级毛片多女| 国产微拍一区二区三区四区| 色哟哟国产精品一区二区| 亚洲日韩精品伊甸| 欧美亚洲一二三区| 日韩欧美国产另类| 一级毛片在线播放| 精品福利一区二区免费视频| 午夜精品久久久久久久2023| 中文字幕久久波多野结衣| 国产精品女人呻吟在线观看| 精品小视频在线观看| 国产精品久久自在自线观看| 国产精品免费p区| 老司国产精品视频91| 亚洲全网成人资源在线观看| www精品久久| 欧美日韩国产综合视频在线观看| 青草国产在线视频| 国产永久免费视频m3u8| 国产中文一区a级毛片视频 | 亚洲制服丝袜第一页| 久久久精品国产SM调教网站| 3D动漫精品啪啪一区二区下载| 日韩小视频在线观看| 久久综合伊人77777| 999精品免费视频| 欧美激情二区三区| 尤物精品视频一区二区三区| 亚洲综合一区国产精品| 97综合久久| 国产剧情无码视频在线观看| 91国内外精品自在线播放| 91麻豆精品国产高清在线| 国产黄在线观看| 九月婷婷亚洲综合在线| 天天做天天爱夜夜爽毛片毛片| 永久天堂网Av| 亚洲二区视频| 午夜a级毛片| 国产粉嫩粉嫩的18在线播放91| 九色视频一区| 99久久国产精品无码| 久久久久无码国产精品不卡| 91久久天天躁狠狠躁夜夜| 免费人成视网站在线不卡| 亚洲VA中文字幕| 伊人久久大线影院首页| 精品国产一二三区| 91福利在线看| 日本一本正道综合久久dvd| 97超碰精品成人国产| 性喷潮久久久久久久久| 亚洲男人的天堂久久精品| 亚洲成人高清在线观看| 久久国产高潮流白浆免费观看| 欧美综合一区二区三区| 尤物国产在线| 亚洲一区毛片|