999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On k-trees with Extremal Signless Laplacian Estrada Index and Estrada Index

2018-04-09 10:56:32,,
關(guān)鍵詞:結(jié)構(gòu)

, ,

(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China)

All graphs considered in this paper are finite, undirected and simple. LetG=(V,E) be a connected graph, letNG(v)={u|uv∈E},NG[v]=NG(v)∪{v}. DenotedG(v)=|NG(v)| by the degree of the vertexvofG. IfW?V, letNG(W)=∪v∈WNG(v)W,NG[W] be the set of vertices within distance at most 1 fromW,G-Wbe the subgraph ofGobtained by deleting the vertices ofWand the edges incident with them. IfE0?E(G), we denote byG-E0the subgraph ofGobtained by deleting the edges inE0. IfE1is the subset of the edge set of the complement ofG,G+Edenotes the graph obtained fromGby adding the edges inE1: IfE={xy} andW={v}, we writeG-xyandG-vinstead ofG-{xy} andG-{v}, respectively. The joinG1∨G2of two edge-disjoint graphsG1andG2is obtained by adding an edge from each vertex inG1to each vertex inG2. For other undefined notations we refer to Bollobás[1].

LetD=D(G)=diag(d(v1),…,d(vn)) be a diagonal matrix with degrees of the corresponding vertices ofGon the main diagonal and zero elsewhere, whered(vi) is the degree ofvi. The matrixQ=D(G)+A(G) is called the signless Laplacian ofG. SinceQis real symmetric and positive semi-definite matrix, its eigenvalues are real numbers. Letq1≥q2≥…≥qn≥0 are the signless Laplacian eigenvalues ofG. The multiplicity of 0 as an eigenvalue ofQis equal to the number of bipartite connected components ofG. The set of all eigenvalues ofQis the signless Laplacian spectrum ofG.

1 Preliminaries

In this section, we give some definitions and structure properties ofk-trees which will be used in the proof of our main results.

Lemma1[11]

LetGandHbe two graphs withu1,v1∈V(G) andu2,v2∈V(H). IfMk(G;u1,v1)≤Mk(H;u2,v2) for all positive integersk, then we write (G;u1,v1)?M(H;u2,v2). If (G;u1,v1)?M(H;u2,v2) and there is at least one positive integerk0such thatMk0(G;u1,v1)

Fig.1 The k-trees Sk,n-k and 圖1 k-樹(shù) Sk,n-k 和

Lemma3Letu,v∈V(G) andNG(v)?NG[u]. Then

(i) (G;v)?M(G;u),and (G;w,v)?M(G;w,u) for eachw∈V(G) . Moreover, ifdG(v)

(ii) (G;v)?T(G;u), and (G;w,v)?T(G;w,u) for eachw∈V(G)[12]. Moreover, ifdG(v)

ProofWe only need to prove (i).

Firstly, we prove (G;v)?M(G;u).

LetWbe a walk inWk(G;v). Ifuis not inW, note thatNG(v)?NG[u], letf(W)=W′, whereW′ is the walk that is obtained by replacing the vertexvbyu, obviously,W′∈Wk(G;u) . Ifuis inW, we can also lookWas a walk which is starting and ending at vertexu, letf(W)=W.

Obviously,fis an injection fromWk(G;v) toWk(G;u). Hence (G;v)?M(G;u). IfdG(v)

(i) If (G;v)T(G;u), and (G;wi,v)?M(G;wi,u) for eachi=1,2,…,r,thenEE(Gv)

(ii) If (G;v)T(G;u), and (G;wi,v)?T(G;wi,u) for eachi=1,2,…,r, thenSLEE(Gv)

Lemma 4 is an excellent tool to deal with the extremal problems on Estrada index and signless Laplacian Estrada index, but it has many conditions which have to be provided when we want to use it.The lemma 3 enables us to discover a special case that provides such conditions.

2 Main results

In this section, we will give a unified method to characterize thek-trees with the largest and second largest Estrada index and signless Laplacian Estrada index, respectively, which is simpler than the method provided in Ref[10].

Lemma5LetGbe a graph withvu,uw∈E(G) andvw?E(G). LetG′=G-vu+vw. IfNG(v)?NG[u], thenEE(G)

ProofLetH=G-vu. ThenG=H+vu;G′=H+vwandNH(v)?NH[u]. Note thatw?NG[v], we havedH(v)

Repeated by Lemma 5, we can obtain the following result.

Lemma6LetGbe a graph andX={x1,x2,…,xt} be an independent set of equivalent vertices such thatxiu,uw∈E(G) andxiw?E(G) for 1≤i≤t. LetG′=G-{xiu,1≤i≤t}+{xiw,1≤i≤t}. IfNG(v)?NG[u], thenEE(G)

ProofSince there exists a vertexv∈S1(G-S1(G)), letNG-S1(G)(v)={v1,v2,…,vk},UG(v)=NG(v)-NG-S1(G)(v). Then the vertices inNG-S1(G)(v) induce a complete graphKk; and the vertices inUG(v) which are all simplicial verices, induce an empty graph.

For a vertexx∈UG(v), it is adjacent to all but one vertex inNG-S1(G)(v). LetUibe the set of vertices inUG(v) whose neighbour set isPG(v)=|{1≤i≤k,Ui≠?}|, where 1≤i≤k. For a vertexv∈S1(G-S1(G)), letv∈S1(G-S1(G)) andp(G)=min|{PG(v),v∈S1(G-S1(G))}|.Without loss of generality, letpG(u)=p(G),NG-S1(G)(v)={v1,v2,…,vk} andUG(u)=U1∪…∪Up(G)(as shown in Fig.2). Obviously, we haveNG[Ui]?NG[u] for 1≤i≤k. LetG′=G-{ux:x∈U1}+{v1x:x∈U1}.

Fig.2 The structure of NG-S1(G)(v) and UG(u)圖2  NG-S1(G)(v)和UG(u)的結(jié)構(gòu)

Note thatv1x?E(G). By Lemma 6, we haveEE(G)

Fig.3 The structure of the graph G* in the proof in Theorem 9圖3 定理9證明中圖G* 的結(jié)構(gòu)

LetV(G*)S1(G*)={v1,v2,…,vk+1} and |S1(G*-S1(G*))|={vk+1}. Further, letUG(vk+1)=NG(vk+1)-{v1,v2,…,vk};Uibe the set of vertices inUG(vk+1) whose neighbour set is {v1,…,vi-1,vi+1,…,vk,vk+1} for 1≤i≤k, andp=|{1≤i≤k,Ui≠?}| (as shown in Fig.3).

Case3p=1 andS1(G*)-UG(vk+1)=?.

This completes the proof.

Fig.4 The graphs Sn and 圖4 圖Sn和

[1]Bollobás B. Modern graph theory[M]. Berlin, New York: Springer-Verlag, 1998.

[2]Estrada E. Characterization of 3D molecular structure[J]. Chemical Physics Letters, 2000, 319: 713-718.

[4]Ayyaswamy S K, Balachandran S, Venkatakrishnan Y B, et al. Signless Laplacian Estrada index[J]. MATCH - Communications in Mathematical and in Computer Chemistry, 2011, 66: 785-794.

[5]Harary F, Palmer E M. On acyclic simplicial complexes[J]. Mathematika, 1968,15: 115-122.

[6]Beineke L W, Pippert R E. The number of labeledk-dimensional trees[J]. Journal of Combinatorial Theory, 1969, 6(2): 200-205.

[7]Estes J, Wei B. Sharp bounds of the Zagreb indices ofk-trees[J]. Journal of Combinatorial Optimization, 2014, 27: 271-291.

[8]Wang S, Wei B. Multiplicative Zagreb indices ofk-trees[J]. Discrete Applied Mathematics, 2015, 180: 168-175.

[9]Wang X X, Zhai M Q, Shu J L. Upper bounds on the spectral radius ofk-trees[J]. Applied Mathematics- Journal of Chinese Universities Series a, 2011, 26(2): 209-214.

[10]Huang F, Wang S. On maximum Estrada indices ofk-trees[J]. Linear Algebra and Its Applications, 2015, 487: 316-327.

[11]Song L, Staton W, Wei B. Independence polynomials ofk-tree related graphs[J]. Discrete Applied Mathematics, 2010, 158: 943-950.

[12]Nasiri R, Elahi H R, Fath-Tabar G H, et al. The signless Laplacian Estrada index of tricyclic graphs [EB/OL]. [2013-11-30].http://arxiv.org/abs/1412.2280v2.

[13]Du Z, Liu Z. On the Estrada and Laplacian Estrada indices of graphs[J]. Linear Algebra and Its Applications, 2011,435: 2065-2076.

[14]Ellahi H, Nasiri R, Fath-Tabar G, et al. On maximum signless Laplacian Estrada indices of graphs with given parameters[EB/OL]. [2013-11-30]. http:// arXiv:1406.2004v1.

猜你喜歡
結(jié)構(gòu)
DNA結(jié)構(gòu)的發(fā)現(xiàn)
《形而上學(xué)》△卷的結(jié)構(gòu)和位置
論結(jié)構(gòu)
新型平衡塊結(jié)構(gòu)的應(yīng)用
模具制造(2019年3期)2019-06-06 02:10:54
循環(huán)結(jié)構(gòu)謹(jǐn)防“死循環(huán)”
論《日出》的結(jié)構(gòu)
縱向結(jié)構(gòu)
縱向結(jié)構(gòu)
我國(guó)社會(huì)結(jié)構(gòu)的重建
人間(2015年21期)2015-03-11 15:23:21
創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長(zhǎng)
主站蜘蛛池模板: 国产91全国探花系列在线播放| 在线一级毛片| 国产成人精品男人的天堂下载 | 国产在线观看人成激情视频| 国产精品成| 一级毛片免费高清视频| 久久永久视频| 欧美特黄一免在线观看| 中国丰满人妻无码束缚啪啪| 婷婷伊人五月| Aⅴ无码专区在线观看| 成人精品区| 亚洲精选无码久久久| 久草视频精品| 米奇精品一区二区三区| 手机在线看片不卡中文字幕| 欧美日韩国产精品va| 亚洲一欧洲中文字幕在线| 波多野结衣AV无码久久一区| 免费无码在线观看| 精品1区2区3区| 国产精品露脸视频| 日韩无码黄色| 亚洲精品视频免费| 亚洲日韩每日更新| 国产成人久视频免费| 日本不卡视频在线| av天堂最新版在线| 欧美精品另类| 国产精品九九视频| 久久五月天国产自| 日本精品影院| 亚洲精品图区| 国产亚洲欧美在线中文bt天堂| 国产一级在线观看www色| 亚洲二区视频| 日本在线国产| 国产一级无码不卡视频| 国产青榴视频| 亚洲欧美一区二区三区蜜芽| 国产精彩视频在线观看| 日本人妻丰满熟妇区| 九九热这里只有国产精品| 亚洲成av人无码综合在线观看 | 亚洲综合九九| 国产亚洲男人的天堂在线观看| 青青青视频蜜桃一区二区| 二级毛片免费观看全程| 国产午夜看片| 一级在线毛片| 中文字幕有乳无码| 欧美成人综合在线| 亚洲精品国产乱码不卡| 国产精品成| 欧美五月婷婷| 98超碰在线观看| 青青青亚洲精品国产| 国产成人91精品| 精品丝袜美腿国产一区| 国产99在线观看| 欧美日韩精品综合在线一区| 亚洲精品日产AⅤ| 国产网友愉拍精品| 青青热久免费精品视频6| 日韩色图区| 在线观看的黄网| 久久一日本道色综合久久| 手机在线国产精品| 香蕉视频在线观看www| 亚洲日本在线免费观看| 亚洲不卡网| 欧美久久网| 宅男噜噜噜66国产在线观看| 国产美女91呻吟求| 性视频久久| 激情综合网址| 91人妻在线视频| 日韩欧美国产区| 99精品久久精品| 欧美性猛交一区二区三区| 18禁高潮出水呻吟娇喘蜜芽| 国产永久在线观看|