李瑤 潘福鑫 王雷 吳瓊 曹滌非 宋睿 黃國慶 薛佳瑩 孫堯
摘要 闡述了WRKY轉錄因子的結構及分類,綜述了近年來WRKY轉錄因子在植物脅迫應答中的功能的研究進展,并分析了目前WRKY轉錄因子研究存在的問題和今后的發展方向,為WRKY轉錄因子的研究提供參考。
關鍵詞 WRKY轉錄因子;脅迫應答;功能
中圖分類號 S188 文獻標識碼
A 文章編號 0517-6611(2018)14-0024-03
Function of WRKY Transcription Factors in Plant Stress Response
LI Yao1,PAN Fuxin2,WANG Lei1 et al
(1.Institute of Advanced Technology,Heilongjiang Academy of Sciences,Harbin,Heilongjiang 150000; 2.Teaching and Experimental Equipment Guidance Center of Heilongjiang,Harbin,Heilongjiang 150000)
Abstract We expounded the structure and classification of WRKY transcription factor,summarized WRKY transcription factor in recent years in the research of plant stress response function,and analyzed the existing problems in the research of transcription factor WRKY and the future direction of development,so as to provide reference for the study of transcription factor WRKY.
Key words WRKY transcription factor;Stress response;Function
植物在進化過程中形成了一系列機制來適應和抵御各種逆境脅迫。植物受到脅迫時,胞外信號通過信號轉導進入胞內,激活轉錄因子與下游靶基因結合,在轉錄水平上促進基因表達,從而響應植物的應答反應[1]。WRKY轉錄因子是高等植物中特有的一種鋅指型轉錄因子,參與植物的脅迫反應、葉片衰老和發育等各種生理過程。目前,研究者已先后在擬南芥[2] (Arabidopsis thalilana)、水稻[3] (Oryza sativa)、楊樹[4] (Populus trichocarpa)、番茄[5] 等植物中發現了WRKY轉錄因子。筆者綜述了WRKY轉錄因子對脅迫應答等方面的調控研究進展,以期為WRKY轉錄因子的研究奠定基礎。
1 WRKY轉錄因子的結構與分類
轉錄因子結構包含不同的區域:DNA結合域、轉錄激活域以及連接區。WRKY轉錄因子擁有由高度保守的60個氨基酸構成的WRKY結構域,該結構域N端含有高度保守的WRKYGQK氨基酸序列,C端則有1個鋅指結構[6]。
根據不同的WRKY結構域數量及鋅指結構的特點,WRKY轉錄因子家族一般被分為3類。第1類通常含有2個WRKY結構域和1個C2H2鋅指結構,如WRKY蛋白ABF1、SPF1等。第2類和第3類WRKY蛋白只包含有1個WRKY結構域,不同的是,第2類WRKY蛋白的鋅指結構為C2H2,第3類的鋅指結構為C2HC。據報道,目前發現的WRKY蛋白大多屬于第2類[7]。
2 WRKY轉錄因子在脅迫應答中的功能
2.1 生物脅迫 目前已經發現的很大一部分的WRKY轉錄因子都參與了植物對生物脅迫的反應過程。WRKY轉錄因子能夠在植物多種免疫系統中發揮調控的作用,而且對病原物的響應范圍較廣,是植物響應生物脅迫的重要轉錄因子家族[8]。例如,擬南芥AtWEKY33對植物抗毒素的合成起調控作用,并能夠調控某些抗病基因的表達[9]。Choi 等[10]發現,OsWRKY6基因的過量表達能夠使水稻表現出對病原物更強的抗性。研究還發現,在OsWRKY6基因過表達的水稻株系中,水楊酸的濃度和異分支算合成酶1的轉錄水平都要高于野生型。異分支算合成酶是水楊酸生物合成過程中的主要酶,表明OsWRKY6可以調控異分支算合成酶的表達從而調節水楊酸的濃度,進行自我調節。表1為部分抗病相關的WRKY轉錄因子。
此外,植物被昆蟲取食之后,WRKY轉錄因子的表達水平也會發生變化。Lu等[11]研究發現剝離螟蟲取食能夠誘導水稻中OsWRKY53和OsWRKY70的表達,表明在植物應答昆蟲取食的防衛過程中可能有WRKY轉錄因子家族的某些成員的參與;Li等[12]將菊花中的CmWRKY48過量表達,結果抑制了蚜蟲群體數量的正常,據此推斷CmWRKY48參與調控植物對蚜蟲的防御機制。表2為部分蟲害相關的WRKY轉錄因子。
2.2 非生物脅迫 植物在生長過程中要不斷適應外界變化的環境。在逆境脅迫下,植物的生理生化過程會發生變化,其中,WRKY轉錄因子起到了一定的調控作用。研究表明,WRKY轉錄因子參與了許多非生物逆境如干旱、高溫、低溫等的應答反應[6]。例如,楊樹的WRKY轉錄因子家族中,有61個轉錄因子參與植株的非生物脅迫調控[19];Okay等[20]研究表明,在干旱脅迫的條件下,小麥中的TaWRKY16、TaWRKY24、TaWRKY59和TaWRKY61表達水平會迅速上升,據此推斷這幾種WRKY轉錄因子參與了應答干旱脅迫的過程。Ramamoorthy等[21]對水稻103個WRKY轉錄因子在非生物脅迫的表達譜進行分析,發現有54個WRKY轉錄因子被誘導表達。同時,他們還發現有些WRKY轉錄因子受一種脅迫因子的誘導,而有的WRKY轉錄因子受幾種脅迫因子的誘導,表明這些WRKY轉錄因子在響應脅迫的過程中有一定的特異性。表3為部分非生物脅迫相關的WRKY轉錄因子。
3 展望
作為植物所特有的轉錄因子,WRKY轉錄因子與植物的生長發育及抗逆性密切相關,近年來,許多研究者開始利用基因組學、轉錄譜、基因工程以及生物信息學等方法進行WRKY轉錄因子的研究。由于WRKY轉錄因子在脅迫中所表現的調控作用,可以通過基因工程的方法改變WRKY轉錄因子的表達,進而提高植株的抗病性、抗蟲性、耐旱性和耐寒性等。但目前仍存在一些問題,WRKY基因功能存在冗余性和轉錄因子的多功能性,為有效利用這些基因設置了一定的障礙。若想有效利用WRKY轉錄因子,就要充分了解WRKY轉錄因子的調控機制以及各轉錄因子之間的相互調控網絡等,對利用WRKY轉錄因子篩選抗逆植株品種以及提高植株的抗逆性做進一步研究。
參考文獻
[1]
王娜,張振葆,黃鳳珠,等.WRKY轉錄因子參與植物非生物脅迫應答的研究進展[J].核農學報,2014,28(10):1819-1827.
[2] YU D Q,CHEN C H,CHEN Z X.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].The Plant Cell,2001,13(7):1527-1539.
[3] ABBRUSCATO P,NEPUSZ T,MIZZI L,et al.OsWRKY22,a monocot WRKY gene,plays a role in the resistance response to blast[J].Mol Plant Pathol,2012,13(8):828-841.
[4] KARIM A,JIANG Y,GUO L,et al.Isolation and characterization of a subgroup Iia Wrky transcription factor Ptrwrky40 from Populus trechocarpa[J].Tree Physiol,2015,35(10):1129-1139.
[5] LIU B,HONG Y B,ZHANG Y F,et al.Tomato WRKYtranscriptional factor SIDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J].Plant Sci,2014,227:145-156.
[6] 文鋒,吳小祝,廖亮,等.WRKY轉錄因子在植物抗逆生理中的研究進展[J].廣西植物,2017,37(1):69-79.
[7] 史書婷,龔小慶,鄒養軍.WRKY轉錄因子與植物逆境響應[J].中國生物化學與分子生物學報,2017,33(7):674-680.
[8] 程遠,姚祝平,阮美穎,等.WRKY轉錄因子在植物逆境應答中的功能[J].分子植物育種,2016,14(11):3214-3223.
[9] MAO G H,MENG X Z,LIU Y D,et al.Phosphorylation of a WRKY transcription factor by two pathogenresponsive MAPKs drivers phytoalexin biosynthesis in Arabidopsis[J].Plant Cell,2011,23(4):1639-1653.
[10] CHOI C,HWANG S H,FANG I R,et al.Molecular characterization of Oryza Sativa WRKY6,which binds to Wboxlike element 1 of the Oryza sativa pathogensisrelated(PR) 10a promoter and confers reduced susceptibility to pathogens[J].New Phytol,2015,208(3):846-859.
[11] LU J,JU H P,ZHOU G X,et al.An EARmotifcontaining ERF transcription factor affects herbivoreinduced signaling,defense and resistance in rice[J].Plant J,2011,68(4):583-596.
[12] LI P L,SONG A P,GAO C Y,et al.The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J].Plant Physiol Biochem,2015,95:26-34.
[13] YU F F,HUAXIA Y F,LU W J,et al.GhWRKY15,a member of the WRKY transcription factor family identified from cotton(Gossypium hirsutum L.),is involved in disease resistance and plant development[J].BMC Plant Biol,2012,12:144.
[14] LIU X F,SONG Y Z,XING F Y,et al.Ghwrky25,a group Ⅰ Wrky gene from cotton,confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J].Protoplasma,2016,253(5):1265-1281.
[15] KUSNIERCZYK A,WINGE P,JORSTAD T S,et al.Towards global understanding of plant defence against aphidstiming and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack[J].Plant Cell Environ,2008,31(8):1097-1115.
[16] HUI D,IQBAL J,LEHMANN K,et al.Molecular interactions between the specialist herbivore Manduca sexta(Lepidoptera,Sphingidae) and its natural host Nicotiana attenuate:V.Microarray analysis and further characterization of largescale changes in herbivoreinduced mRNAs[J].Plant Physiol,2003,131:1877-1893.
[17] WANG H H,HAO J J,CHEN X J,et al.Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plant[J].Plant Mol Biol,2007,65(6):799-815.
[18] ATAMIAN H S,EULGEM T,KALOSHIAN I.SlWRKY70 is required for Mi1mediated resistance to aphids and nematodes in tomato[J].Planta,2012,235(2):299-309.
[19] JIANG Y Z,DUAN Y J,YIN J,et al.Genomewide identification and characterization of the populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic streeses[J].J Exp Bot,2014,65(22):6629-6644.
[20] OKAY S,DERELLI E,UNVER T.Transcriptomewide identification of bread wheat WRKY transcription factors in response to drought stress[J].Mol Genet Genom,2014,289(5):765-781.
[21] RAMAMOORTHY T,JIANG S Y,KUMAR N,et al.A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J].Plant Cell Physiol,2008,49(6):865-879.
[22] SUZUKI N,RIZHSKY L,LIANG H J,et al.Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c[J].Plant Physiol,2005,139:1313-1322.
[23] JIANG Y J,LIANG G,YU D Q.Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J].Mol Plant,2012,5(6):1375-1388.
[24] LI P L,SONG A P,GAO C Y,et al.Chrysanthemum WRKY gene CmWRKY 17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants[J].2015,34(8):1365-1378.
[25] SHI W N,HAO L L,LI J,et al.The Gossypium hirsutum WRKY gene GhWRKY391 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J].Plant Cell Rep,2014,33(3):483-498.
[26] ZHOU Q Y,TIAN A G,ZOU H F,et al.Soybean WRKYtype transcription factor genes,GmWRKY13、GmWRKY21 and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnol J,2008,6:486-503.
[27] NURUZZAMAN M,CAO H Z,XIU H,et al.Transcriptomicsbased identification of WRKY gene and characterization of a salt and Hormoneresponsive Pgwrky1 gene in panax ginseng[J].Acta Biochim Biophys Sin,2016,48(2):117-131.
[28] WANG X T,ZENG J,LI Y,et al.Expression of TaWRKY44,a wheat WRKY gene,in transgenic tobacco confers multiple abiotic stress tolerances[J].Front Plant Sci,2015,6:615.