包貴華
摘 要:文章從鋼筋混凝土梁的受彎破壞形態及其相應的受力特點出發,利用承載能力極限狀態理論,結合消防工作的現況,論證了鋼筋混凝土建筑構件裂縫測量儀在實際滅火工作中得到運用的可能性。對于鋼筋混凝土結構火災撲救過程中險情預警裝置的研究有一定的啟發性。
關鍵詞:鋼筋混凝土;支撐能力;裂縫;承載能力極限狀態
中圖分類號:TU998 文獻標識碼:A 文章編號:1671-2064(2018)07-0117-01
1 理論基礎
1.1 鋼筋混凝土構件是一種不燃燒體且具有良好耐火性的建筑構件
鋼筋混凝土構件是用不燃性建筑材料(按GB5464檢驗方法進行檢驗)制成的不燃燒體構件,該構件在空氣中或高溫作用時不起火、不微燃、不炭化。故在建筑領域中得到廣泛應用。
1.2 建筑物在火災荷載作用下破壞順序
建筑物在火災荷載作用下(除爆炸荷載外),隨著建筑材料、建筑構件的燃燒和破壞,整個建筑結構必然遭到局部破壞或全部坍塌,其坍塌次序一般是先吊頂后屋頂,最后是墻壁;也就是說,建筑物的承重結構中,梁的破壞先于柱,由此可知,在論證中考慮柱失去支撐能力沒有多大意義,因為在柱失去支撐能力前,梁已先于柱破壞,所以在鋼筋混凝土建筑構件裂縫測量儀理論計算中只考慮梁裂縫的開展。
1.3 鋼筋混凝土建筑構件的工作原理及其正截面受彎破壞形態
(1)鋼筋混凝土建筑構件的工作原理:鋼筋混凝土建筑構件的承重是通過鋼筋與其周圍混凝土之間的相互作用來實現的,其相互作用主要包括粘結力和相對滑移兩方面(其中粘結力起主要作用)。粘結的重要性在于它是鋼筋與混凝土變形一致、共同受力的保證,如粘結遭到破壞,就會使構件變形增加,裂縫劇烈開展甚至破壞。(2)鋼筋混凝土建筑構件正截面受彎破壞形態有:適筋破壞、超筋破壞和少筋破壞三種形態。超筋截面破壞形態:混凝土先壓碎,鋼筋不屈服;少筋截面破壞形態:一裂就壞;這兩種破壞形態均屬脆性破壞類型并且沒有明顯預兆,在施工中禁止采用(預應力鋼筋混凝土除外)。適筋截面破壞形態則不同,它是鋼筋先屈服,混凝土后壓碎;破壞前有明顯預兆,故在施工中廣泛采用。
1.4 小結
通過以上分析知:梁的正截面的破壞始于縱向受拉鋼筋屈服,終于受壓區混凝土壓碎。在縱向受拉鋼筋屈服時,裂縫截面進一步開展,最終梁破壞(此時梁處于最危險狀態)。
2 研究對象的選擇和裂縫寬度計算
2.1 建筑耐火等級的選擇
目前,一般的工業與民用建筑耐火等級均選為二級,受力鋼筋大多采用Ⅱ級,其抗拉強度設計值fy=310N/mm2;混凝土強度等級采用C25,其強度標準值為25N/mm2,抗壓標準ftk=1.75N/mm2,彎曲抗壓設計強度fcm=13.5N/mm2。
研究對象的選擇:設一普通簡支梁,梁截面b×h=250mm ×500mm,計算跨度Lo=6.0m,承受均布永久荷載gk=2.45kN/m(包括梁自重),活荷載標準值qk=18kN/m)。
2.2 裂縫寬度計算
2.2.1 平均裂縫寬度ω的計算
鋼筋水平處的平均裂縫寬度等于平均裂縫間距Lcr內鋼筋與混凝土兩者伸長值之差。設鋼筋的平均應變為εsm,混凝土的平均應變為εcm,則平均裂縫寬度ω=(εsm-εcm)·Lcr,由于εcm很小可以略去不計,有:
ω=ψ·εsm·Lcr=ψ·(σss/Es)·Lcr (1)
式中:ψ—縱向受拉鋼筋應變不均勻系數,當鋼筋接近屈服(承載能力極限狀態)時ψ趨近于1,相反則減小,其值介于0.4—1.0之間;
σss—在荷載的短期效應組合Ms作用下,梁內縱向受拉鋼筋應力(N/mm2);
Es—鋼筋彈性模量,Ⅱ級鋼筋Es=200KN/mm2。
根據試驗資料和使用經驗,并考慮鋼筋表面形狀影響系數ν后,將受力構件的平均裂縫間距表達式修正為:
Lcr=[2.7c+(0.1d)/ρte]·ν (2)
式中:c—混凝土保護層厚度,c=25mm;
d—縱向受拉鋼筋的直徑,mm;
ρte—受彎構件受拉鋼筋的有效配筋率;
ν—縱向受拉鋼筋表面特征系數,對變形鋼筋取ν=0.7。
綜上得平均裂縫寬度:
ω=ψ·(σss/Es)·Lcr
=ψ·(σss/Es)·[2.7c+(0.1d)/ρte]·ν (3)
在承載能力極限狀態下:ψ=1,σss=fy=310N/mm2;另外我國《混凝土結構設計規范》規定:
ψ=1.1-(0.65·ftk)/(ρte·σss) (4)
ψ=1.1-(0.65×1.75)/(ρte×310)
1.1-(0.65×1.75)/(ρte×310)=1
ρte=0.03669=3.669%
對承重梁的配筋要考慮其界限配筋率(最大配筋率)ρb:
ρb=εb·fcm/fy (5)
=0.544×13.5/310=0.0236=2.369%
式中:εb—界限相對受壓區高度,對Ⅱ級鋼筋εb=0.544;
由于ρte>ρb,選用ρb進行配筋計算:
ρb=As/(0.5·b·h) (6)
As=ρb×0.5×b×h=0.02369×0.5×250×500=1480.6(mm2)
可以選用的鋼筋種類及計算截面積:
(1)6Φ18,As=1526mm2;
(2)5Φ20,As=1570mm2;
(3)4Φ22,As=1520mm2。
根據《混凝土結構設計規范》要求,實際配筋面積偏差應在計算配筋截面積的5%以內,故鋼筋的選取面積As= 1480.6mm2×(1±5%),即配筋面積不應小于1406.6mm2,不應大于1554.6mm2。考慮到鋼筋的根數過多對建筑構件的影響,選取4Φ22,As=1520mm2。
通過以上數據得平均裂縫寬度:
ω=ψ·(σss/Es)·[2.7c+(0.1d)/ρte]·ν
=1.0×[310÷(200×103)]×(2.7×25+0.1×22÷0.02369)×0.7
=0.174(mm)
2.2.2 最大裂縫寬度
ωmax=αcr×ω (7)
=2.1×0.174=0.366(mm)
式中:αcr—構件受力特征系數,受彎構件αcr=2.1
2.3 利用以上數據反算所選研究對象的裂縫寬度
已知:b×h=250mm×500mm,Lo=6.0m,gk=2.45kN/m,qk=18kN/m
荷載短期效應組合Ms=0.125×(gk+qk)·Lo2 (8)
=0.125×(2.45+18)×62=92.02(kN·m)
在荷載的短期效應組合Ms作用下,梁內縱向受拉鋼筋的應力:
σss=Ms/(0.87·ho·As) (9)
=92.02×106÷(0.87×465×1520)=149.65(N·mm2)
縱向受拉鋼筋應變不均勻系數:
ψ=1.1-(0.65×1.75)/(0.0236×149.65)=0.7791
2.4 小結
在具體運用方面:當梁的變形介于0.137mm至0.3mm時,梁的工作狀態及變形處于受力第Ⅱ階段;當梁的變形介于0.3mm至0.365mm時,梁的工作狀態及變形處于受力第Ⅲ階段。鋼筋混凝土建筑構件裂縫測量儀在梁的變形接近0.3mm時發出預警,依據現代科學技術該目的可以實現。
3 結語
由于本人知識的局限性和條件限制,無法通過實驗來確定裂縫寬度的修正系數。在此希望對此感興趣的學者繼續深入研究和探討,將鋼筋混凝土建筑構件裂縫測量儀及早應用到滅火工作中,減少在滅火過程中因建筑坍塌事故帶來的經濟損失和人員傷亡。
參考文獻
[1]程文襄.混凝土及砌體結構[M].武漢:武漢大學出版社,2000.10.
[2]混凝土結構設計規范(GB10-89)[S].1998年修訂.
[3]建筑防火編寫組.建筑防火[M].北京:群眾出版社,1995.104-122.