王艷
【摘 要】隨著對工件的美觀度及功能要求得越來越高,現代工件生產中的外形設計也日趨復雜,自由曲面所占比例不斷增加,相應的結構也設計得越來越復雜。這些都對工件加工技術提出了更高要求,不僅應保證高的制造精度和表面質量,而且要追求加工表面的美觀。本文從數控機床加工工藝、數控編程兩個方面講述數控機床在機械加工行業的應用。
【關鍵詞】加工工藝;數控編程
一、數控機床加工工藝
1.粗加工。高速加工中的粗加工所應采取的工藝方案是高切削速度、高進給率和小切削用量的組合。等高加工方式是眾多CAM軟件普遍采用的一種加工方式,應用較多的是螺旋等高和等Z軸等高兩種方式,也就是在加工區域僅一次進刀,在不抬刀的情況下生成連續光滑的刀具路徑,進、退刀方式采用圓弧切入、切出。螺旋等高方式的特點是,沒有等高層之間的刀路移動,可避免頻繁抬刀、進刀對零件表面質量的影響及機械設備不必要的耗損。對陡峭和平坦區域分別處理,計算適合等高及適合使用類似3D偏置的區域,并且可以使用螺旋方式,在很少抬刀的情況下生成優化的刀具路徑,獲得更好的表面質量。在高速加工中,一定要采取圓弧切入、切出連接方式,以及拐角處圓弧過渡,避免突然改變刀具進給方向,禁止使用直接下刀的連接方式,避免將刀具埋入工件。加工模具型腔時,應避免刀具垂直插入工件,而應采用傾斜下刀方式(常用傾斜角為20°—30°),最好采用螺旋式下刀以降低刀具載荷。加工模具型芯時,應盡量先從工件外部下刀然后水平切入工件。刀具切入、切出工件時應盡可能采用傾斜式(或圓弧式)切入、切出,避免垂直切入、切出。采用攀爬式切削可降低切削熱,減小刀具受力和加工硬化程度,提高加工質量。
2.半精加工。半精加工的主要目標是使工件輪廓形狀平整,表面精加工余量均勻,這對于工具鋼模具尤為重要,因為它將影響精加工時刀具切削層面積的變化及刀具載荷的變化,從而影響切削過程的穩定性及精加工表面質量。粗加工是基于體積模型,精加工則是基于面模型。以前開發的CAD/CAM系統對零件的幾何描述是不連續的,由于沒有描述粗加工后、精加工前加工模型的中間信息,故粗加工表面的剩余加工余量分布及最大剩余加工余量均是未知的。因此應對半精加工策略進行優化以保證半精加工后工件表面具有均勻的剩余加工余量。優化過程包括:粗加工后輪廓的計算、最大剩余加工余量的計算、最大允許加工余量的確定、對剩余加工余量大于最大允許加工余量的型面分區(如凹槽、拐角等過渡半徑小于粗加工刀具半徑的區域)以及半精加工時刀心軌跡的計算等。
3.精加工。高速精加工策略取決于刀具與工件的接觸點,而刀具與工件的接觸點隨著加工表面的曲面斜率和刀具有效半徑的變化而變化。對于由多個曲面組合而成的復雜曲面加工,應盡可能在一個工序中進行連續加工,而不是對各個曲面分別進行加工,以減少抬刀、下刀的次數。然而,由于加工中表面斜率的變化,如果只定義加工的側吃刀量(Step over),就可能造成在斜率不同的表面上實際步距不均勻,從而影響加工質量。一般情況下,精加工曲面的曲率半徑應大于刀具半徑的1.5倍,以避免進給方向的突然轉變。在模具的高速精加工中,在每次切入、切出工件時,進給方向的改變應盡量采用圓弧或曲線轉接,避免采用直線轉接,以保持切削過程的平穩性。
高速精加工策略包括三維偏置、等高精加工和最佳等高精加工、螺旋等高精加工等策略。這些策略可保證切削過程光順、穩定,確保能快速切除工件上的材料,得到高精度、光滑的切削表面。精加工的基本要求是要獲得很高的精度、光滑的零件表面質量,輕松實現精細區域的加工,如小的圓角、溝槽等。對許多形狀來說,精加工最有效的策略是使用三維螺旋策略。使用這種策略可避免使用平行策略和偏置精加工策略中會出現的頻繁的方向改變,從而提高加工速度,減少刀具磨損。這個策略可以在很少抬刀的情況下生成連續光滑的刀具路徑。這種加工技術綜合了螺旋加工和等高加工策略的優點,刀具負荷更穩定,提刀次數更少,可縮短加工時間,減小刀具損壞機率。它還可以改善加工表面質量,最大限地減小精加工后手工打磨的需要。在許多場合需要將陡峭區域的等高精加工和平坦區域三維等距精加工方法結合起來使用。
二、數控機床編程
1.數控機床編程要求。高速銑削加工對數控編程系統的要求越來越高,價格昂貴的高速加工設備對軟件提出了更高的安全性和有效性要求。高速切削有著比傳統切削特殊的工藝要求,除了要有高速切削機床和高速切削刀具外,具有合適的CAM編程軟件也是至關重要的。數控加工的數控指令包含了所有的工藝過程,一個優秀的高速加工CAM編程系統應具有很高的計算速度、較強的插補功能、全程自動過切檢查及處理能力、自動刀柄與夾具干涉檢查、進給率優化處理功能、待加工軌跡監控功能、刀具軌跡編輯優化功能和加工殘余分析功能等。高速切削編程首先要注意加工方法的安全性和有效性;其次,要盡一切可能保證刀具軌跡光滑平穩,這會直接影響加工質量和機床主軸等零件的壽命;最后要盡量使刀具載荷均勻,這會直接影響刀具的壽命。
2.CAM系統應具有很高的計算編程速度。高速加工中采用非常小的進給量與切深,其NC程序比對傳統數控加工程序要大得多,因而要求軟件計算速度要快,以節省刀具軌跡編輯和優化編程的時間。
3.全程自動防過切處理能力及自動刀柄干涉檢查能力。高速加工以傳統加工近10倍的切削速度進行加工,一旦發生過切對機床、產品和刀具將產生災難性的后果,所以要求其CAM系統必須具有全程自動防過切處理的能力及自動刀柄與夾具干涉檢查、繞避功能。系統能夠自動提示最短夾持刀具長度,并自動進行刀具干涉檢查。
4.豐富的高速切削刀具軌跡策略。高速加工對加工工藝走刀方式比傳統方式有著特殊要求,為了能夠確保最大的切削效率,又保證在高速切削時加工的安全性,CAM系統應能根據加工瞬時余量的大小自動對進給率進行優化處理,能自動進行刀具軌跡編輯優化、加工殘余分析并對待加工軌跡監控,以確保高速加工刀具受力狀態的平穩性,提高刀具的使用壽命。采用高速加工設備之后,對編程人員的需求量將會增加,因高速加工工藝要求嚴格,過切保護更加重要,故需花多的時間對NC指令進行仿真檢驗。一般情況下,高速加工編程時間比一般加工編程時間要長得多。為了保證高速加工設備足夠的使用率,需配置更多的CAM人員。現有的CAM軟件都提供了相關功能的高速銑削刀具軌跡策略。
三、結論
數控高速切削技術是切削加工技術的主要發展方向之一,目前主要應用于汽車工業和精加工行業,尤其是在加工復雜曲面的領域、工件本身或刀具系統剛性要求較高的加工領域等,是多種先進加工技術的集成,其高效、高質量為人們所推崇。它不僅涉及到高速加工工藝,而且還包括高速加工機床、數控系統、高速切削刀具及CAD/CAM技術等。高速加工技術目前已在發達國家的精加工制造業中普遍應用,而在我國的應用范圍及應用水平仍有待提高,由于其具有傳統加工無可比擬的優勢,仍將是今后加工技術必然的發展方向。
【參考文獻】
[1]《數控機床編程入門》,侯春霞主編,機械工業出版社.
[2]《金屬切削手冊》上海市金屬切削協會主編,上海科學技術出版社.
[3]《金屬切削機床設計》,大連工學院戴曙主編,機械工業出版社.