王潔
摘要:高考對(duì)知識(shí)考察的范圍越來(lái)越全面,題目中更富有數(shù)學(xué)思維與方法的體現(xiàn),在高三階段,教師面對(duì)著教學(xué)壓力,學(xué)生面臨著高考?jí)毫?,教師作為教學(xué)的研究者,應(yīng)在復(fù)習(xí)環(huán)節(jié)實(shí)施行之有效的教學(xué)策略,達(dá)到有效復(fù)習(xí)的目的,本文筆者從三個(gè)方面對(duì)高三數(shù)學(xué)有效復(fù)習(xí)教學(xué)進(jìn)行分析與探究。
關(guān)鍵詞:高三數(shù)學(xué);有效復(fù)習(xí);挖掘本質(zhì);加深記憶;適時(shí)練習(xí)
高三階段主要以復(fù)習(xí)與備考為主,學(xué)生需要把高中知識(shí)進(jìn)行復(fù)習(xí),建立聯(lián)系,構(gòu)建知識(shí)體系,并達(dá)到對(duì)問(wèn)題的舉一反三與知識(shí)的融會(huì)貫通,為迎接高考的到來(lái)做好準(zhǔn)備,教師作為學(xué)生學(xué)習(xí)的引導(dǎo)者,要做好有效復(fù)習(xí)教學(xué)的工作,轉(zhuǎn)變以題海戰(zhàn)術(shù)為主要的復(fù)習(xí)模式,進(jìn)行精心設(shè)計(jì)復(fù)習(xí)環(huán)節(jié),讓學(xué)生的心理發(fā)展處于低壓的狀態(tài),從而提高復(fù)習(xí)的效率,本文筆者以高三數(shù)學(xué)為出發(fā)點(diǎn),從“基礎(chǔ)知識(shí)為主、及時(shí)反思總結(jié)、有效適時(shí)練習(xí)”三個(gè)方面對(duì)有效復(fù)習(xí)策略進(jìn)行分析與探究。
一、基礎(chǔ)知識(shí)為主,挖掘問(wèn)題本質(zhì)
數(shù)學(xué)問(wèn)題的根本總是追溯到基礎(chǔ)知識(shí)與數(shù)學(xué)本質(zhì)中,復(fù)雜的問(wèn)題也是在基礎(chǔ)知識(shí)的考察中延伸出來(lái)的,在一輪復(fù)習(xí)階段,教師應(yīng)以數(shù)學(xué)的基礎(chǔ)知識(shí)為主,而不是進(jìn)行大量的難題訓(xùn)練,學(xué)生由于基礎(chǔ)知識(shí)不牢固,在問(wèn)題的解決中常常陷入迷茫,因此,教師應(yīng)為學(xué)生進(jìn)行思維導(dǎo)圖的展現(xiàn),并在每個(gè)知識(shí)點(diǎn)中進(jìn)行專題復(fù)習(xí),循序漸進(jìn),學(xué)生在復(fù)習(xí)過(guò)程中,不斷的出現(xiàn)錯(cuò)誤,及時(shí)糾正,完善知識(shí)體系,并在題目的分析中自然而言的找出問(wèn)題的內(nèi)涵與本質(zhì),找到頭腦中需要提取的知識(shí)點(diǎn),達(dá)到問(wèn)題的有效解決。
高考必須掌握的六大模塊為:“三角部分、概率統(tǒng)計(jì)、立體幾何、數(shù)列部分、解析幾何函數(shù)和導(dǎo)數(shù)”,以函數(shù)和導(dǎo)數(shù)為例,注重基礎(chǔ)知識(shí)的復(fù)習(xí)與補(bǔ)充,筆者通過(guò)以思維導(dǎo)圖為切入點(diǎn),首先以常見(jiàn)的幾種函數(shù)模型,指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)三種函數(shù)的性質(zhì)比較作為知識(shí)概況與梳理,然后進(jìn)行逐一知識(shí)點(diǎn)的細(xì)化,通過(guò)及時(shí)的課堂測(cè)驗(yàn)查找學(xué)生的學(xué)習(xí)掌握程度與存在知識(shí)的漏洞,并及時(shí)調(diào)整復(fù)習(xí)教學(xué)進(jìn)度,循序漸進(jìn),達(dá)到復(fù)習(xí)教學(xué)的有效性。
二、及時(shí)反思總結(jié),加深有意識(shí)記
反思的過(guò)程作為構(gòu)建知識(shí)體系的過(guò)程,是學(xué)生進(jìn)行偏差思維糾正的過(guò)程,也是學(xué)生突破思維障礙的關(guān)鍵階段,在高三復(fù)習(xí)的過(guò)程中,教師應(yīng)督促學(xué)生進(jìn)行及時(shí)的反思與總結(jié),而不是一道題目解決后,學(xué)生沒(méi)有思考的過(guò)程與解決方法的總結(jié),一些思維的構(gòu)建是把問(wèn)題分類,系統(tǒng)的知識(shí)間也能建立聯(lián)系的過(guò)程,在知識(shí)體系構(gòu)建的環(huán)節(jié)中,機(jī)械的記憶一些解題方法與規(guī)律顯然對(duì)學(xué)生的遷移能力是不利的,因此,有意識(shí)記對(duì)數(shù)學(xué)知識(shí)的學(xué)習(xí)是重要的,同時(shí),反思過(guò)程為這一識(shí)記模式的進(jìn)行提供了有效的方法。
以概率統(tǒng)計(jì)為例,在進(jìn)行模塊的測(cè)評(píng)結(jié)束后,首先筆者發(fā)現(xiàn)部分學(xué)生對(duì)于一些題目由于閱讀能力弱,在求平均數(shù)、方差、眾數(shù)等方面的題目中不能較好提取有效的數(shù)據(jù)信息,有些學(xué)生對(duì)于概率的相關(guān)的知識(shí)存在混淆,如:“互斥事件與對(duì)立事件”不能進(jìn)行區(qū)分,有些學(xué)生對(duì)概率的計(jì)算方面存在方法的漏洞,如:公式法、列表法、樹(shù)狀圖法、面積法,由于學(xué)生掌握的不全,對(duì)一些題目不能有效的解決。
三、有效適時(shí)練習(xí),提高復(fù)習(xí)效率
練習(xí)是復(fù)習(xí)環(huán)節(jié)中不可或缺的過(guò)程,教師往往以大量的題目使學(xué)生展開(kāi)訓(xùn)練,而沒(méi)有考慮學(xué)生的接受程度與對(duì)知識(shí)是否具有清晰的把握,因此,教師應(yīng)結(jié)合高考的課程標(biāo)準(zhǔn),建立知識(shí)之間的聯(lián)系,把知識(shí)整合于題目中,并篩選少之有用和具有代表性的題目,進(jìn)行適時(shí)訓(xùn)練,不僅減輕學(xué)生的無(wú)用功與心理壓力,而且為學(xué)生系統(tǒng)性的練習(xí)提供良好的保障,從而提高學(xué)生的復(fù)習(xí)效率。
以三角函數(shù)專項(xiàng)為例,筆者以多種題型作為練習(xí)的展開(kāi),“選擇題、填空題、解答題”等,在題目難易程度的設(shè)置中,由淺入深,由表及里,在基礎(chǔ)知識(shí)的選擇中,符合章節(jié)學(xué)習(xí)目標(biāo)的體現(xiàn)與靈活運(yùn)用為主,如:“由三角函數(shù)判斷三角形的形狀、由復(fù)合函數(shù)求最小周期、通過(guò)函數(shù)圖像判斷函數(shù)表達(dá)式、化簡(jiǎn)三角函數(shù)”等,在探究問(wèn)題的篩選中,以考察學(xué)生變式思維與知識(shí)遷移能力為主,如:“復(fù)合函數(shù)求未知數(shù)分類討論、證明某一函數(shù)為定值、”等,學(xué)生在全面涵蓋知識(shí)點(diǎn)的情況下,進(jìn)行綜合性訓(xùn)練,不僅訓(xùn)練了思維能力,而且提高了復(fù)習(xí)效率。
綜上所述,高考背景下的高三復(fù)習(xí)環(huán)節(jié)至關(guān)重要,教師與學(xué)生對(duì)其重視程度深,需要教師深思如何進(jìn)行有效復(fù)習(xí)教學(xué),使學(xué)生按照課程標(biāo)準(zhǔn)的情況下進(jìn)行有效復(fù)習(xí),因此,教師首先應(yīng)轉(zhuǎn)變傳統(tǒng)的教學(xué)理念,不能以大量的題海戰(zhàn)術(shù)為主要的教學(xué)模式,訓(xùn)練學(xué)生機(jī)械性的思維,導(dǎo)致學(xué)生遇到陌生的題目不能舉一反三,從而在解決中造成困難,教師應(yīng)把基礎(chǔ)知識(shí)作為首要復(fù)習(xí)的環(huán)節(jié),學(xué)生只有領(lǐng)會(huì)數(shù)學(xué)知識(shí)的本質(zhì),才能建立數(shù)學(xué)知識(shí)體系,遇到問(wèn)題時(shí)才能運(yùn)用知識(shí)達(dá)到方法的融會(huì)貫通,其次,在學(xué)習(xí)過(guò)程中也要進(jìn)行及時(shí)的反思,把反思的結(jié)果當(dāng)成一種生成性的學(xué)習(xí)資源,同時(shí),教師應(yīng)篩選有效的練習(xí)題目,從而減輕學(xué)生的壓力,提高復(fù)習(xí)效率。
參考文獻(xiàn):
[1]張?jiān)?新課程理念下高三數(shù)學(xué)復(fù)習(xí)的做法與體會(huì)[J].高中數(shù)學(xué)教與學(xué)(1):39-40.
[2]蔣楚輝,蔣紅田.高三數(shù)學(xué)復(fù)習(xí)方略研究[J].當(dāng)代教育論壇,2006.