999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Dimension Free Inequality

2018-11-06 03:21:26
長江大學學報(自科版) 2018年21期

[Abstract]To deduce regularity of p-harmonic mappings, the following important inequality plays a fundamental role given by Giaquinta-Modica and Acerbi-Fusco: For any γ>-12, there exist constants c1,c2>0 depending only on γ and n, such that for any x,y∈Rnand μ≥0, there holds: c2x-y≤(μ2+x2)γx-(μ2+y2)γy(μ2+x2+y2)γ≤c1x-yIn this paper this inequality is improved by showing that the above inequality holds in any Hilbert space with c1,c2 depending only on γ. This implies that the above inequality is dimension free.

[Keywords]Hilbert space; inequality; dimension free

1 Introduction and Main Result

Since the seminar work of Morrey[1], harmonic mappings become one of the central topics in geometric analysis, see e.g. Schoen-Uhlenbeck[2]and the monograph of SchoenYau[3], and the references therein. A natural generalization of harmonic mappings is the so calledp-harmonic mappings for 1

Motivated by the useful applications of the above inequality inp-harmonic mappings, and also under the consideration that it may have other potential applications, in this paper, we will further show that the above two constantsc1,c2depend only onγand are independent of the dimensionn. Moreover, we will prove that the above inequality holds in Hilbert spaces as well. In this way, we improve the result of Acerbi-Fusco [6, Lemma 2.2].

To state our result, denote byHan arbitrary Hilbert space with inner productand denote the norm ofHby |x|=x∈H. Our main result reads as follows.

In the following, we will also usec1,c2to denote different constants that depend only onγfrom line to line.

2 Proof of Main Result

The proof of Theorem 1 is reduced to the following lemma.

(1)

ProofSuffices to assumeμ>0 and|x|≥|y|>0. The result is trivial wheny=0. Notice that:

So it is equivalent to prove that, for anyμ>0 and|x|≥|y|>0, there holds:

(2)

for somec1,c2>0 depending only onγ. We divide the proof into two cases.

Case1γ≥0.

Thus:

This yieldsc2(γ)=4-1-γin (2).

Since:

we have:

Thus we can takec2(γ)=1 in (2).So it remains to prove the existence ofc1(γ)in (2). To this end, let:

such that:

(3)

Sinceγ<0, we have:

we claim that:

This implies:

The claim is proved.

Now we claim that:

Hence we can take:

This proves the claim, and thus (3) follows. The proof is complete.

Now we can prove Theorem 1. For simplicity, denote:

ProofofTheorem1It is enough to prove the result forμ>0. The caseμ=0 follows by approximation. Then,μ>0 implies that the Hilbert space valued functionf=f(x)is smooth for anyγ>0. So:

whereDf(x) is the Gateaux derivative off:

for anyx,z∈H.

Hence, for anyz∈H, we have:

This implies:

Combining Lemma 1 yields the results.

We also obtain a useful inequality from Theorem 1.

In particular, we have:

ProofNote that the second inequality is a special case of the first one.By Theorem 1 we have:

For another side, note that:

≥min{

1,1+2γ

≥min{

1,1+2γ

wherec2(γ)is defined as in (1). The proof is complete.

主站蜘蛛池模板: 免费全部高H视频无码无遮掩| 国产国产人成免费视频77777| 中文字幕在线观看日本| 秋霞国产在线| 亚洲大尺码专区影院| 国产精品美女网站| 亚洲成在线观看 | 亚洲无码精品在线播放| 亚洲人成影院午夜网站| 青青操国产视频| 久久一色本道亚洲| 在线观看av永久| 亚洲不卡影院| 91久久偷偷做嫩草影院电| 国产成人精品一区二区| 国产精品久久久久久搜索| 色偷偷一区二区三区| 久久中文字幕2021精品| 国产二级毛片| 国产精品hd在线播放| 狠狠色综合网| 国产精品免费福利久久播放 | 国产xx在线观看| 国产亚洲高清在线精品99| 国产精品久久久久鬼色| 国产精品香蕉在线| 免费日韩在线视频| 国产波多野结衣中文在线播放| 欧美精品1区| 国产99热| 不卡午夜视频| 日韩经典精品无码一区二区| 欧美无专区| 国产成人精品一区二区免费看京| 狠狠做深爱婷婷久久一区| 囯产av无码片毛片一级| 成人年鲁鲁在线观看视频| 国产欧美日韩免费| 在线无码九区| 色综合天天娱乐综合网| 国产乱子伦手机在线| 亚洲精品国产精品乱码不卞 | 波多野结衣中文字幕一区| 她的性爱视频| 亚洲国产综合精品中文第一| 国产美女精品一区二区| 国产一区二区三区免费观看| 中文国产成人精品久久一| 精品无码国产一区二区三区AV| 久夜色精品国产噜噜| 国内精品久久久久久久久久影视| 丰满人妻被猛烈进入无码| 久久久久夜色精品波多野结衣| 成人噜噜噜视频在线观看| 久久国产V一级毛多内射| 婷婷六月在线| 91美女视频在线观看| 福利姬国产精品一区在线| 一级毛片免费高清视频| 91www在线观看| 国产精品人莉莉成在线播放| 亚洲AV成人一区二区三区AV| 永久免费无码成人网站| 日本手机在线视频| 四虎永久在线精品国产免费| 日本亚洲国产一区二区三区| 亚洲午夜天堂| 四虎成人免费毛片| 中国丰满人妻无码束缚啪啪| 国产av无码日韩av无码网站| 欧美激情第一区| 很黄的网站在线观看| 婷婷色丁香综合激情| 国产成人精品免费视频大全五级 | 亚洲经典在线中文字幕| 欧美日韩免费在线视频| 性欧美在线| 亚洲浓毛av| 国内精品一区二区在线观看 | 91丝袜在线观看| 国产农村精品一级毛片视频| 国产精品播放|