趙蕾 劉學員 鄧澤熙 何杰
[摘要] 心血管異位鈣化是一種與臨床多種心血管事件密切相關的病理改變,是發生惡性事件的獨立危險因素,其發生進展是類似骨重塑的主動而復雜的過程,其中包括血管平滑肌、間質細胞及基質細胞的參與,多種細胞因子及介質、外泌因子的調節以及脂肪酸代謝、炎性反應的干預等多因素共同作用。了解其發病機制對于預防及阻斷其進展、維護老年人生命健康、降低老年人群的死亡率有著重要意義。
[關鍵詞] 心血管異位鈣化;主動調節;發病機制
[中圖分類號] R543.5? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2019)02(c)-0036-04
[Abstract] Cardiovascular ectopic calcification is a pathological change closely related to clinical events and an independent risk factor of malignant cardiovascular events, its occurrence and development is an active and complex process similar to bone remodeling, including the participation of vascular smooth muscle, interstitial cell, stroma cell, the adjustment of varieties of cytokines, medium and eccrine factors, and the combined action of multiple factors, such as the intervention of fatty acid metabolism and inflammatory reaction. It has great significance of understanding its pathogenesis for preventing and stopping its progress, maintaining elderly life health, and decreasing the mortality rate of the elderly people.
[Key words] Cardiovascular ectopic calcification; Active regulation; Pathogenesis
心血管異位鈣化是指鈣磷在血管、心肌和心瓣膜的異常沉積[1-2],同時也常被描述為礦化結節和纖維化并存的結局[3]。他是與臨床心血管疾病密切相關的一種病理改變,在老年人群中發病率更高、更為集中。越來越多的研究者發現,心血管鈣化程度及其積分與全因死亡率、猝死及致命性急性心梗均呈正相關[4],而且與外科術后的康復、進程與預后顯著相關[3]。無論是否合并高血壓,心血管異位鈣化程度都是一個非常有用的危險分層預測因子,對于那些程度較高的患者需要進行更嚴格的生活方式干預以及更集中的藥物對其干預治療[5]。一直以來都認為心血管異位鈣化是一個退化過程,但是越來越多的證據支持其是一個類似骨重塑的主動過程[3,6]。探究心血管異位鈣化的發病機制并給予正確的干預,對降低心血管疾病的患病率及死亡率,特別是老年人群生命健康有著非常重要的意義。
1 細胞因子及介質的參與
近年來,研究發現,異位鈣化的抑制和觸發是體內各種不同的細胞因子和介質所導致的主動過程[7-8],是一個類似骨化和礦化的過程。Davaine等[3]代表的研究團隊,在對女性血管鈣化患者的研究中發現,動脈鈣化是一個類似骨化的過程,高表達的骨保護素受體激活與骨化生顯著相關(P = 0.03),在細胞水平,這類患者周細胞顯著升高(P = 0.04)。Mari等[9]研究小組通過對主動脈瓣狹窄鈣化狹窄(CAS)患者研究發現,腫瘤壞死因子(TNF)-α能夠主動誘導人類主動脈瓣間質細胞的異位鈣化,從而導致CAS的發生,其中還有基質Gla蛋白(MGP)和骨形態發生蛋白(BMP)等因子的參與。Schurgers等[10]研究認為,血清中去羧基化的MGP細胞因子可作為血管鈣化的標志物。Goettsch等[11]研究發現,Sortilin是調節平滑肌細胞鈣化的重要細胞因子,其主要通過調節鈣化蛋白介質TNAP的附著并進入細胞外囊,從而啟動平滑肌細胞囊外鈣化。已經有多個相關的研究證據顯示,血管鈣化是一個類似于軟骨骨化和修復的主動過程,其中有許多細胞因子的調控,如BMP、轉化生長因子β(TGF-β)、TNF、MGP、骨連素(ON)、骨保護素(OPG)、氧化的脂肪酸和未調節的鈣磷代謝物[12-14]。Fukumoto[15]重點研究了成纖維細胞生長因子-23(FGF-23)在異位鈣化中的作用,發現這類細胞因子通過降低近曲小管重吸收磷酸鹽從而降低血清中磷酸鹽水平,同時降低1,25(OH)-2D水平降低腸壁中磷酸鹽的重吸收,進而阻止異位鈣化的發生。Ragnauth等[16]的團隊也發現,TNF可以通過多種途徑及機制,激活平滑肌細胞及瓣膜間質細胞的鈣化發生。
2 血管平滑肌細胞(VSMCs)及瓣膜間質細胞參與
VSMCs和瓣膜間質細胞通過骨分化和礦化,均可參與心血管異位鈣化的發生。Chen等[17]研究發現,瓣膜間質細胞和VSMCs一樣,具有很強的潛在成骨活性,同時在鈣化的瓣膜中活性更高。Martinez等[18]在其研究中指出,VSMCs在高磷的培養環境中很容易發生成骨轉化(VOT)和提早鈣化。在壓力和應激狀態下,VSMCs會由間質起源細胞轉化為成骨細胞類型;在血管內的鈣化部分,發現VSMCs的細胞表型更加接近于成骨細胞,伴有很多骨相關蛋白質表達的上調,比如Runx2、Osterix、Msx2和Sox9,而這些因子通常被認為參與骨鈣化的調節過程[19]。諸多研究[20-21]將Runx2認為是VSMCs發生VOT的關鍵因素和最早的標志物,無論在體內或是體外,發生鈣化的VSMCs均能檢測出Runx2。同時,Alesutan等[22]發現VSMCs中酸性細胞的pH值在調節其鈣化/軟骨化的轉化中起到重要的作用。而Husseini等[23]則首次報道了在主動脈瓣鈣化中IL-6的超表達,提示瓣膜間質細胞的礦化過程中,IL-6是一個關鍵的信號,用來提升BMP2的合成。
3 脂肪酸代謝的紊亂和失衡
Vorkas等[24]在其研究中闡明了冠狀動脈鈣化及其類似相關性疾病(CCAD)與脂肪酸代謝的失衡有關,主要是鞘磷脂和卵磷脂代謝的失調,同時證實了這種失衡狀態同時能增加冠脈疾病的嚴重性,而且在嚴重的心血管鈣化模型中發現,磷脂酰代謝途徑中的鞘磷脂的敏感性明顯下降。Rizza等[25]通過代謝組學定向分析了49種代謝產物(18種氨基酸、30種酰基肉堿、左旋肉毒堿),發現其中參與了脂肪酸氧化代謝的中長鏈酰基肉毒堿及左旋肉毒堿可以作為心血管異位鈣化的預測因子。Huang等[26]通過對41例外周動脈鈣化性(PAD)疾病患者的調查發現,脂肪代謝產物如脂蛋白和磷脂等可以作為PAD患者發生嚴重心血管事件的預測因子,也可以作為血管異位鈣化進展的高危因素。
4 血管平滑肌、外切體酶介導的基質細胞參與
在分子機制層面,心血管的鈣化啟動有基質細胞的參與和雙向調節。Kapustin等[27]和Schlieper等[28]通過電子顯微鏡發現,基質細胞是血管局部礦化的初始病灶,其中包含有彈性蛋白和膠原纖維。而這一發現被New等[29]證實,他們在基質細胞介導的動脈鈣化斑塊中發現了VSMCs、巨噬細胞、內皮細胞和血小板。在Bertazzo等[30]的實驗中,從早期發生異位鈣化的大動脈處提取基質細胞,通過納米技術用膠原酶溶解法,分析了CD9、CD63、CD68等因子,進一步證實了促進異位鈣化發生的基質細胞的VSMC來源。Kapustin等[31]在其研究中描述了血管平滑肌-基質細胞的來源是細胞內多泡體(MVB)的外切體酶,這些外切體酶產生的基質細胞與血管鈣化有關,外切體的產生與神經鞘磷脂磷酸二脂酶-3(SMPD3)的表達上調有關,而SMPD3的分泌由成骨細胞及生長因子等調節。Kapustin等[31]和Shroff等[32]在其研究中通過蛋白組學研究,揭示了在VSMCs外泌體介導的基質細胞中包含大量與礦化相關的載體蛋白,能夠通過很多額外機制加速體內的鈣化,而這些途徑需要進一步的深入研究。
5 異位鈣化與炎癥的關系
諸多研究和實驗證明,心血管異位鈣化與炎癥發生密不可分,這其中包括多種炎性因子的參與和高表達。Agharazii等[33]在慢性腎功不全的大鼠模型中,發現IL-6、IL-1、TNF-α等炎性因子的高表達與胸主動脈中膜鈣化相關。Buendia等[34]的研究小組發現,在炎性因子如TNF-α刺激下,血管內皮細胞能夠生成BMP-2,導致內皮微粒(EMPs)的產生,而EMPs含有大量的BMP-2,進一步促進血管平滑肌的骨化生和血管異位鈣化的發生。Abdelbaky等[35]通過對111例60歲左右無癥狀的早期主動脈鈣化患者追蹤調查,運用PET-CT評估早期炎性反應和動脈鈣化的程度,發現早期炎性反應能夠誘導主動脈瓣鈣化的發生進展。Hofmann Bowman等[36]做了大量的研究工作,證實炎癥可以促發SM22α-hs100a12靶向調節,誘導成骨細胞標記基因包括DMP1、Runx2、BMP2、Bglap的表達,從而促進正常的VSMCs向鈣化的VSMCs轉化。而心血管鈣化是一種慢性炎癥的假說也在2011年被提出[7]。
6 高遷移率族蛋白B1(HMGB1)的調節
Chen等[37]闡述了HMGB1對于血管異位鈣化的多種調節作用。HMGB1作為一種細胞核成分存在于幾乎所有真核細胞的線粒體中,炎癥、外傷、壓力等可促使HMGB1釋放,通過糖基化終末受體產物/中性鞘磷脂酶2(RAGE/nSMase2)和TGF-β/BMP兩個信使通道,作用于VSMCs、瓣膜間質細胞以及周細胞,在膜胞和膜基質釋放Runx2、OCN、OPN、BSP等細胞因子,從而促進骨軟化分化,最終導致血管鈣化的發生。這其中,當然也有炎癥、細胞自噬以及活性氧簇等參與調節。這一研究,也給心血管異位鈣化的早期防治提供了一條途徑。
綜上所述,心血管異位鈣化是心腦血管疾病、衰老、慢性腎衰竭等多種疾病的共同的病理生理表現,其發病率高,危害性大,特別是針對老年人群,其發生發展是一個可調控的過程,受內環境、多細胞因子、介質、信號通道、炎癥、脂代謝等多因素影響。由于其病理生理過程的復雜性、發病機制和細胞來源的多樣性,為更深入了解其發生機制,顯然需要展開更多的結合最新技術的臨床研究和基礎實驗。
[參考文獻]
[1]? 陳宇,王士雯.心血管系統異位鈣化分子研究進展[J].心血管病學進展,2004,25(2):81-84.
[2]? Kim JH,Choi YK,Do JY,et al. Estrogen-Related Receptor gamma Plays a Key Role in Vascular? Calcification Through the Up-regulation of BMP2 Expression [J]. Arterioscler Thromb Vasc Biol,2015,35(11):2384-2390.
[3]? Davaine JM,Quillard T,Chatelais M,et al. Bone Like Arterial Calcification in Femoral Atherosclerotic Lesions:Prevalence and Role of Osteoprotegerin and Pericytes [J]. Eur J Vasc Endovasc Surg,2016,51(2):259-267.
[4]? Brinda AT,Ikeda K,Hirata KI,et al. Macrophages Highly Express Carbonic Anhydrase 2 and Play a Significant Role in Demineralization of the Ectopic Calcification [J]. Kobe J Med Sci,2017,63(2):45-50.
[5]? Graham G,Michael JB,Matthew J,et al. Impact of coronary artery calcification on all-cause mortality in individuals with and without hypertension [J]. Atherosclerosis,2012,225(2):432-437.
[6]? Bostrom KI. Where do we stand on vascular calcification? [J]. Vascul Pharmacol,2016,84(9):8-14.
[7]? New SE,Aikawa E. Cardiovascular calcification:an inflammatory disease [J]. Circ J,2011,75(6):1305-1313.
[8]? Haussler MR,Whitfield GK,Haussler CA,et al. 1,25-Dihydroxyvitamin D and Klotho:A Tale of Two Renal Hormones Coming of Age [J]. Vitam Horm,2016,100(1):165-230.
[9]? Mari C,Kazuhiko S. Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves [J]. J Pharmacol Sci,2018, 136(1):257-265.
[10]? Schurgers LJ,Teunissen KJ,Knapen MH,et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid(Gla)protein:under carboxylated matrix Gla protein as marker for vascular calcification [J]. Arterioscler Thromb Vasc Biol,2005,25(8):1629-1633.
[11]? Goettsch C,Hutcheson JD,Aikawa M,et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles [J]. Clin Invest,2016,126(4):1323-1336.
[12]? Chang JC,Miura RM. Regulatory inhibition of biological? tissue mineralization by calcium phosphate through post-nucleation shielding by fetuin-A [J]. J Chem Phys,2016, 144(15):154906.
[13]? Speer MY,Giachelli CM. Regulation of cardiovascular calcification [J]. Cardiovasc athol,2004,13(2):63-70.
[14]? Chen NX,Moe SM. Pathophysiology of Vascular Calcification [J]. Curr Osteoporos Rep,2015,13(5):372-380.
[15]? Fukumoto S. Vascular Calcification Pathological Mechanism and Clinical Application. Regulation of mineral metabolism and mineralization by FGF-23 [J]. Clin Alcium,2015,2(5):687-691.
[16]? Ragnauth CD,Warren DT. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging [J]. Circulation,2010,121(20):2200-2210.
[17]? Chen JH,Yip CY,Sone ED,et al. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential [J]. Am J Pathol,2009,174(3):1109-1119.
[18]? Martinez JM,Muoz-C JR,Herencia C,et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/beta-catenin activation [J]. Am J Physiol Renal Physiol,2013,303(8):1136-1144.
[19]? Shroff R,Long DA,Shanahan C,et al. Mechanistic insights into vascular calcification in CKD [J]. J Am Soc Nephrol,2013,24(2):179-189.
[20]? Rong S,Zhao X,Jin X,et al. Vascular calcification in chronic kidney disease is induced by bone orphogenetic protein-2 via a mechanism involving the Wnt/beta-catenin pathway [J]. Cell Physiol Biochem,2014,34(6):2049-2060.
[21]? Yao L,Sun YT,Sun W,et al. High phosphorus level leads to aortic calcification via beta-catenin in chronic kidney disease [J]. Am J Nephrol,2015,41(1):28-36.
[22]? Alesutan I,Musculus K,Castor T,et al. Inhibition of Phosphate-Induced Vascular Smooth Muscle Cell Osteo-/Chondrogenic Signaling and Calcification by Bafilomycin A1 and Methylamine [J]. Kidney Blood Press Res,2015, 40(5):490-499.
[23]? Husseini ED,Boulanger MC,Mahmut A,et al. P2Y2 receptor represses IL-6 expression by valve intertstitial cells through Akt:implication for calcific aortic valve disease [J]. J Mol Cell Cardiol,2014,72(6):146-156.
[24]? Vorkas PA,Isaac G,Holmgren A,et al. Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease:An exploratory lipidomic study [J]. Int J Cardiol,2015,197(10):192-199.
[25]? Rizza S,Copetti M,Rossi C,et al. Meta-bolomics signature improves the prediction of cardiovascular events in elderly subjects [J]. Atherosclerosis,2014,232(2):260-264.
[26]? Huang CC,McDermott MM,Liu K,et al. Plasma meta-bolomics profiles predict near-term death among individuals with lower extremity peripheral arterial disease [J]. Vasc Surg,2013,58(4):989-996.
[27]? Kapustin AN,Davies JD,Reynolds JL,et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization [J]. Circ Res,2011,109(1):1-12.
[28]? Schlieper G,Aretz A,Verberckmoes SC,et al. Ultrastructural analysis of vascular calcifications in uremia [J]. J Am Soc Nephrol,2010,21(4):689-696.
[29]? New SE,Goettsch C,Aikawa M,et al. Macrophage-derived matrix vesicles:an alternative novel mechanism for microcalcification? in atherosclerotic plaques [J]. Circ Res,2013,113(1):72-77.
[30]? Bertazzo S,Gentleman E,Cloyd KL,et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification [J]. Nat Mater,2013,12(6):576-583.
[31]? Kapustin AN,Chatrou ML,Drozdov I,et al. Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion [J]. Circ Res,2015,116(8):1312-1323.
[32]? Shroff RC,McNair R,Figg N,et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis [J]. Circulation,2008,118(17):1748-1757.
[33]? Agharazii M,St-Louis R,Gautier BA,et al. Inflammatory cytokines and reactive oxygen species as mediators of chronic kidney disease related vascular calcification [J]. Am J Hypertens,2015,28(6):746-755.
[34]? Buendia P,Montesde OA,Madueno JA,et al. Endothelial microparticles mediate inflammation induced vascular calcification [J]. FASEB J,2015,29(1):173-181.
[35]? Abdelbaky A,Corsini E,Figueroa AL,et al. Early aortic valve inflammation precedes? calcification:a longitudinal? FDG-PET/CT study [J]. Atherosclerosis,2015,238(2):165-172.
[36]? Hofmann Bowman MA,Gawdzik J,Bukhari U,et al. S100A12 in vascular smooth muscle accelerates vascular calcification in apolipoprotein E-null mice by activating an osteogenic gene regulatory program [J]. Arterioscler Thromb Vasc Biol,2011,31(2):337-344.
[37]? Chen Q,Wang ZY. Roles of High Mobility Group Box 1 in-Cardiovascular Calcification [J]. Cell Physiol Biochem,2017,42(2):427-440.
(收稿日期:2018-04-27? 本文編輯:張瑜杰)