李茹冰 王娜 劉肖瑩
[摘要] 目的 構建修飾的Ac4MAN(p-羧基苯-α-D-乙酰甘露糖)腦靶向脂質體,并探討Ac4MAN結構穩定性。方法 將Ac4MAN與豬肝酯酶(PLE)于37℃、pH 7.4條件下孵育,于不同時間點取樣;采用高效液相色譜(HPLC)和超高效液相色譜-質譜(UPLC-MS)聯用技術對其進行分析。制備Ac4MAN脂質體并對其進行表征,用流式細胞儀檢測腦膠質瘤細胞U87攝取Ac4MAN脂質體和Ac4MAN脂質體加PLE的情況。 結果 HPLC結果顯示,孵育0~3 h,Ac4MAN峰面積從578.4減少到37.9;孵育4~7 h,Ac4MAN峰面積接近于0;孵育0~7 h,生成的MAN(p-氨基苯-α-D-吡喃甘露糖苷)的峰面積從0增長到363.0,表明隨孵育時間延長,Ac4MAN逐漸減少,MAN逐漸增多。 結論 本研究制備的Ac4MAN脂質體粒徑約為(120.3±2.0)nm,電位約為(-15.76±1.23)mV。Ac4MAN脂質體中加入酶后,U87細胞對其攝取能力有一定的增強。
[關鍵詞] 靶向脂質體;p-羧基苯-α-D-乙酰甘露糖;p-氨基苯-α-D-吡喃甘露糖苷;豬肝酯酶;穩定性;攝取
[中圖分類號] R283 [文獻標識碼] A [文章編號] 1673-7210(2019)04(b)-0004-05
Preparation of braining-targeting liposomes and the structural stability of Ac4MAN on the surface of liposome in vitro
LI Rubing1 WANG Na2 LIU Xiaoying2 TANG Shukun2 PENG Haisheng1,2 TAO Haiquan3
1.Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Heilongjiang Province, Harbin 150028, China; 2.Department of Pharmaceutics, Campus of Harbin Medical University(Daqing), Heilongjiang Province, Daqing 163319, China; 3.Department of Neurosurgery, the 2nd Affiliated Hospital of Harbin Medical Hospital, Heilongjiang Province, Harbin 150000, China
[Abstract] Objective To construct a modified Ac4MAN (p-carboxybenzene-α-D-acetylmannose) brain-targeted liposome and investigate the structural stability of Ac4MAN. Methods Ac4MAN was incubated with porcine liver esterase (PLE) at 37°C, pH 7.4 and sampled at different time points. High performance liquid chromatography (HPLC) and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze it. Ac4MAN liposomes were prepared and characterized. Flow cytometry was used to detect the uptake of Ac4MAN liposomes and Ac4MAN liposomes plus PLE by glioma cells U87. Results The results of HPLC showed that the area of Ac4MAN decreased from 578.4 to 37.9 after incubation for 0-3 h. The area of Ac4MAN peak was close to 0 after incubation for 4-7 h. The peak area of the formed MAN (p-aminobenzene-α-D-pyran mannoside) increased from 0 to 363.0, indicating that with the prolongation of incubation time, Ac4MAN gradually decreased and MAN gradually increased. Conclusion The Ac4MAN liposome prepared in this study has a particle size of (120.3±2.0) nm and a potential of (-15.76±1.23) mV. The uptake of AC4MAN liposomes by U87 cells is enhanced after adding enzymes.
[Key words] Targeted liposomes; P-carboxybenzene-α-D-acetylmannose; P-aminobenzene-α-D-pyran mannoside; Porcine liver esterase; Stability; Uptake
惡性腦膠質瘤的發生率和致死率較高,威脅人類生命健康,是亟待解決的難題[1]。腦腫瘤有侵襲性生長特性,手術難以完全切除,且放化療毒副作用大[2-3]。隨著生物醫學及納米科學的交叉融合,納米靶向制劑逐漸受到重視[4]。納米靶向給藥系統具有親和性、可靶向性及緩釋性等優點,能提高藥物穩定性[5]。靶向脂質體對機體的毒性低,能精確地靶向到靶細胞或靶組織,可用于腦膠質瘤的治療[6-8]。制備靶向脂質體的脂材或相應配體應該穩定、沒有毒性且能高效識別靶組織[9]。研究[10]表明,葡萄糖轉運體(GLUTs)可介導與其結構相似的物質跨越血腦屏障。p-氨基苯-α-D-吡喃甘露糖苷(MAN)是一種甘露糖衍生物,能通過葡萄糖轉運載體介導的運輸功能,跨越血腦屏障并靶向腦膠質瘤細胞[11-13]。在此基礎上,本研究將p-羧基苯-α-D-乙酰甘露糖(Ac4MAN)作為研究目標,構建了一種新的前體脂質體,通過與豬肝酯酶(PLE)在體外共同孵育,研究其在模擬人體環境下的結構變化,探究其產生MAN以及其被攝取情況。
1 材料與方法
1.1 材料
Ac4MAN和MAN由本課題組人員合成(純度達到98%)、豬肝酯酶(杭州創科生物有限公司)、乙腈色譜純(天津市大茂化學試劑廠)、甲醇(色譜純,北京百靈威科技有限公司)、聚乙二醇-二硬脂酰磷脂酰乙醇胺(DSPE-PEG2000)、蛋黃卵磷脂(上海艾韋特醫藥科技有限公司)、羅丹明(Rho,北京海德生物技術有限公司)、膽固醇(上海生物科學技術有限公司)、純凈水(黑龍江娃哈哈飲料有限公司)。
1.2 試驗方法
1.2.1 HPLC測定
1.2.1.1 溶液的配制 PLE溶液:精密稱取PLE粉末3 mg,加1 mL純水溶解,配成濃度為3 mg/mL的溶液,即得。MAN溶液:精密稱取MAN粉末4 mg,加1 mL甲醇溶解,配成濃度為4 mg/mL的溶液,即得。Ac4MAN溶液:精密稱取Ac4MAN粉末6份,分別為0.2、0.4、0.6、0.8、1.0、1.2 mg,每份加1 mL甲醇溶解成濃度為0.2、0.4、0.6、0.8、1.0、1.2 mg/mL的溶液,即得。
1.2.1.2 樣品制備 精密吸取3.0 mg/mL的PLE溶液1.9 mL,加4.0 mg/mL的Ac4MAN溶液0.1 mL,調溫度37°C、pH 7.4,置于磁力攪拌器上進行孵育,于0~7 h整點時取出200 μL作為樣品;取1.9 mL純水,加入4.0 mg/mL的MAN溶液(pH 7.4)0.1 mL,作為對照組。
1.2.1.3 HPLC色譜條件 使用Agilent 1200型高效液相色譜儀(美國Agilent公司),色譜柱為Zorbax Eclipse XDB-C18(4.6 mm × 150 mm,5 μm);流動相為乙腈-純水(50∶50,V/V)等度洗脫;流速1.0 mL/min;檢測波長296 nm;進樣量20 μL;柱溫30°C。
1.2.1.4 標準曲線 分別精密吸取濃度為0.2、0.4、0.6、0.8、1.0、1.2 mg/mL的Ac4MAN 溶液20 μL,以相應的試劑為空白,按照高效液相色譜法于296 nm波長處測定其峰面積,以峰面積為縱坐標,以濃度為橫坐標,繪制標準曲線。
1.2.1.5 樣品測定 精密吸取“1.2.1.2”項下制備的樣品溶液20 μL,注入高效液相色譜儀,按照“1.2.1.3”項下的色譜條件檢測。
1.2.2 UPLC-MS
1.2.2.1 樣品制備 按“1.2.1.2”中的操作制備樣品,孵育時間為15 h。
1.2.2.2 UPLC色譜條件 使用Waters AcquityTM型超高效液相色譜-質譜聯用儀(美國Waters公司);色譜柱為Waters AcquityTM UPLC BEH-C18(2.1 mm×100 mm,1.7 μm);流動相A:0.1%甲酸-乙腈,流動相B:0.1%甲酸-10 mmol/L甲酸銨-水;進樣量:0.5 μL;柱溫:30℃;梯度洗脫:0~7 min,30%A~100%A;7~8.5 min,100%A~30%A;8.5~10 min,30%A。
1.2.2.3 MS條件 電離源模式:電噴霧離子化;電離源極性:負模式;電噴霧電壓:2500 V;離子源溫度:110℃;干燥氣溫度:200℃;質量范圍:100~1100 m/z。
1.2.2.4 樣品測定 精密吸取“1.2.2.1”項下制備的樣品20 μL,注入超高效液相色譜儀,按照“1.2.2.2”“1.2.2.3”的色譜和質譜條件進行檢測。
1.2.3 脂質體攝取研究
1.2.3.1 制備Ac4MAN脂質體 稱取膽固醇、蛋黃卵磷脂和DSPE-PEG2000適量,根據需要加入Rho,用薄膜分散法制備脂質體,將DSPE-PEG1000-Ac4MAN制備成膠束,取1 mL脂質體,加入0.5 mL Ac4MAN膠束,于室溫下孵育2 h,生理鹽水透析,得到Ac4MAN修飾的脂質體溶液。
1.2.3.2 脂質體攝取檢測 分別制備用Rho標記的Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE,將U87膠質瘤細胞懸液鋪于6孔板中,向每孔中加入等量的NaCl、Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE,孵育后用胰酶消化液消化,再用磷酸鹽(PBS)緩沖液重懸細胞,于流式細胞儀上檢測。
2 結果
2.1 含量測定
0~3 h整點樣品的含量分別為3.98、0.80、0.42、0.19 μg;4~7 h整點樣品含量較小,忽略不計。
2.2 HPLC檢測Ac4MAN加酶后穩定性
Ac4MAN對照品峰面積為578.4;MAN對照品峰面積為1066.0。Ac4MAN加酶1 h后,可以水解生成新物質且最顯著的是MAN。隨著時間延長,0~7 h整點取樣,Ac4MAN逐漸減少,峰面積分別為578.4、120.5、69.5、37.9、0.0、0.0、0.0、0.0;MAN逐漸增多,峰面積分別為0.0、344.4、396.5、412.3、408.3、392.8、374.2、363.0,最終Ac4MAN消失,MAN逐漸增多。見圖1。
2.3 UPLC-MS探究Ac4MAN水解的變化過程
采用UPLC-MS對Ac4MAN加酶后的物質進行分析。Ac4MAN相對分子質量為440.180;MAN相對分子質量為271.115;Ac4MAN加酶孵育15 h后依次脫去乙酰基后產生的4種物質,其相對分子質量分別為398.150、356.142、314.127、272.115。Ac4MAN脫去4個乙?;笊傻奈镔|的分子量與MAN標準物的分子量相同,提示生成的物質為MAN。見圖2。
2.4 脂質體表征及加酶后對脂質體攝取的影響
本研究所制備的脂質體呈球形,外表光滑,大小均勻,電位為負。見表1、圖3~4。流式細胞儀(美國BD公司)結果顯示,U87細胞對Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE的熒光吸收值分別為8367、13198、14119。每組孵育4 h,空白組加入NaCl,不加入脂質體??瞻讓φ战M的熒光吸收值為4857,表明U87膠質瘤細胞對Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE都有一定的攝取作用。此外,Ac4MAN-Rho-LIP組加PLE,U87膠質瘤細胞對其脂質體攝取能力高于Ac4MAN-Rho-LIP單獨處理組。見圖5。
3 討論
近年來,脂質體在作為抗腫瘤及抗癌藥物的載體的發展迅速[14]。脂質體是磷脂雙分子層結構,可以通過吸附、融合和吞噬的方式進入靶細胞[15-17]。其具有動態特性的脂質體膜,能更方便地將配體吸附到脂質體的表面,與靶分子更容易地結合,而在其他部位的游離藥物少,可實現靶向釋藥[18]。為改善脂質體的靶向性和體內外穩定性,人們試圖改變脂質體的表面性質,用合適的材料修飾脂質體[19]。葡萄糖轉運體是在腦毛細血管內皮細胞、腦膠質瘤細胞表面高度表達的轉運體,是靶向治療腦膠質瘤的潛在靶點[20]。
為探究Ac4MAN是否和MAN一樣,能靶向腦組織或腦膠質瘤部位而發揮靶向作用,本研究對Ac4MAN進行了穩定性研究。通過HPLC和UPLC-MS發現,在37℃、pH 7.4條件下,將Ac4MAN與PLE共同孵育,隨時間延長,Ac4MAN會逐漸減少,最終生成MAN。Ac4MAN制備的脂質體形態外觀良好,粒徑電位均在穩定可用的納米范圍內,可以增加藥物在靶部位的累積量,從而提高藥效。加酶孵育后的Ac4MAN脂質體比Ac4MAN脂質體更容易被膠質瘤細胞攝取。因此,可以大膽假設Ac4MAN在人體環境中,在適宜的溫度、pH值和酶的作用下,可以水解生成MAN,從而發揮腦靶向作用。
[參考文獻]
[1] Jahan ST,Sadat SMA,Walliser M,et al. Targeted therapeutic nanoparticles:An immense promise to fight against cancer [J]. J Drug Deliv,2017:9 090 325.
[2] Castro MG,Candolfi M,Kroeger K,et al. Gene therapy and targeted toxins for glioma [J]. Curr Gene Ther,2011,11(3):155-180.
[3] Shukla GH,Kour Khera A,Kumar S,et al. Therapeutic potential, challenges and future perspective of cancer stem cells in translational oncology:a critical review [J]. Curr Stem Cell Rest,2017,12(3):207-224.
[4] Bar-Zeev M,Livney YD,Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance [J]. Drug Resist Update,2017,31:15-30.
[5] Mujokoro B,Adabi M,Sadroddiny E,et al. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment:A review [J]. Mater Sci Eng C Mater Biol Appl,2016,69:1092-1102.
[6] Riaz MK,Riaz MA,Zhang X,et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy:A revie [J]. Int J Mol Sci,2018,19(1):195-212.
[7] Pinto MP,Arce M,Yameen B,et al. Targeted brain delivery nanoparticles for malignant gliomas [J]. Nanomedicine (Lond),2017,12(1):59-72.
[8] Maherani BE,Arab-Tehrany M, Mozafari R,et al. Liposomes: a review of manufacturing techniques and targeting strategies [J]. Curr Nano Sci,2011,7(3):436-452.
[9] Siafaka PI,Ustundag Okur N,Karavas E,et al. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting:current status and uses [J]. Int J Mol Sci,2016,17(9):1440.
[10] Szablewski L. Glucose Transporters in Brain: In Health and in Alzheimer′s Disease [J]. J Alzheimers Dis,2017, 55(4):1307-1320.
[11] Hao ZF,Cui YX,Li MH,et al. Liposomes modified with P-aminophenyl-alpha-D-manno-pyranoside: a carrier for targeting cerebral functional regions in mice [J]. Eur J Pharm Biopharm,2013,84(3):505-516.
[12] Nishioka T,Oda Y,Seino Y,et al. Distribution of the glucose transporters in human brain tumors [J]. Cancer Res,1992,52(14):3972-3979.
[13] Du D,Chang N,Sun S,et al. The role of glucose transporters in the distribution of p-aminophenyl-alpha-D-mannopyranoside modified liposomes within mice brain [J]. J Control Release,2014,182:99-110.
[14] Miranda A,Blanco-Prieto MJ,Sousa J,et al. Breaching barriers in glioblastoma. Part Ⅱ: Targeted drug delivery and lipid nanoparticles [J]. Int J Pharm,2017,531(1):389-410.
[15] Woodle MC,Newman MS,Working PK. Biological properties of sterically stabilized liposomes,in Stealth liposomes [J]. CRC Press,2018:123-138.
[16] Pradhan P,Banerjee R,Bahadur D,et al. Targeted Magnetic Liposomes Loaded with Doxorubicin,in Liposomes [J]. Springer,2017:257-272.
[17] Weissig V. Liposomes came first:The early history of liposomology,in Liposomes [J]. Springer,2017:1-15.
[18] Bnyan R,Khan I,Ehtezazi T,et al. Surfactant Effects on Lipid-Based Vesicles Properties [J]. J Pharm Sci,2018, 107(5):1237-1246.
[19] Mu LM,Ju RJ,Liu R,et al. Dual-functional drug liposomes in treatment of resistant cancers [J]. Adv Drug Deliver Rev,2017,115:46-56.
[20] Jurcovicova J. Glucose transport in brain-effect of inflammation [J]. Endocr Regul,2014,48(1):35-48.
(收稿日期:2018-09-21 本文編輯:王 蕾)