于紫月
智能“閱片”、臨床決策、護理機器人……近年來,隨著人工智能的蓬勃發展,人工智能與醫學結合的相關技術開發也進行得如火如荼。
就像“互聯網+”一樣,“人工智能+”的模式必然會給我們的生活帶來翻天覆地的變化,但在涉及生理和生命的醫學領域,人工智能落地還將面臨哪些挑戰?
質與量并重 基礎數據仍需“精煉”
不論在何種領域,數據都是讓機器聰明起來的根本。
“人工智能若想在醫學領域長足發展,數據質量、數據量和標準化方面還有待改進和完善。”8月6日,天津市腫瘤醫院副院長徐波在接受筆者采訪時表示。
“醫療大數據如何‘降噪是個關鍵問題。”徐波指出,醫療大數據涉及的類型近年來呈多模態發展。而病例數據覆蓋面廣,服務用戶多樣,如何構建以病人、醫生、醫院和政府等多中心的數據治理體系,進而面向不同的用戶提供不同的數據視圖和分析結果,是醫療大數據采集及研究中亟待解決的問題。
“盡管我國醫院的數據龐大,但由于疾病的復雜性,數據維度、特性各不相同,質量參差不齊,導致很多細分的病種實際可用數據量少,尤其是較為罕見的疾病類型。如果是多學科交叉的病癥可使用的數據量就更加有限了。”徐波表示。
此外,數據共享也存在壁壘。我國當前醫院與醫院、同一家醫院內科系互不相連,沒有統一標準的臨床結構化病歷報告,不同地域甚至不同醫院之間的數據庫無法通用。
醫工結合 學科交叉人才緊缺
“既懂醫療又懂AI技術的復合型、戰略型人才極其短缺,其中10年以上資深人才尤為缺乏。同時,醫務人員對AI的接納度不足,部分醫務人員甚至對AI抱有抵觸心理。”上海市衛生和健康發展研究中心(上海市醫學科學技術情報研究所)健康科技創新發展部執行主任何達曾在相關期刊發表文章時提到,AI技術的使用需要對醫務人員進行專業化規范培訓,在此背景下,建立完善的人才培養和人才引進機制是重中之重。
徐波告訴筆者,智能醫學領域是人工智能和醫療健康這兩個專業性極強領域的結合,如今二者都能深入研究的人才是“香餑餑”。而正是因為二者專業性極強,人才培養的模式才更加復雜、更值得深入探討。
在徐波看來,智能醫學領域發展時間短,能大范圍推廣的培養模式尚需一定的時間摸索。但歸根結底,如果讓部分有興趣的醫學生在校期間就能接觸到一些人工智能相關的工科基礎知識,將會對其后續向著智能醫學方向發展起到一定的引導和輔助作用。
市場良性發展 監管體系亟須加強
合理的商業化模式尚在“摸著石頭過河”的階段,而相配套的監管機制也亟須完善。清華大學法學院院長申衛星此前在接受筆者采訪時表示,目前只有《民法總則》第127條提出,“法律對數據、網絡虛擬財產的保護有規定的,依照其規定”。但具體如何保護數據,并沒有詳細說明。
以往,機器被歸為工具一類,工具造成的損害責任通常是產品設計者、制造者來承擔,但如果工具經過人工智能深度學習,成為自主型產品后造成損害,這到底是誰的責任?依舊是產品的責任還是智能系統開發單位的責任?這些疑問都需要明確的法條來解答。
筆者了解到,我國不僅對智能醫學數據的隱私保護、責任規范、安全性等沒有明確的法律指示,人工智能在醫療健康領域應用的質量標準、準入體系、評估體系也未設置詳細的準則,無法對AI數據和算法進行有效驗證和評價。
“目前國際上也沒有成功的案例經驗可供借鑒,發展出一套符合我國國情、相對完善的智能醫學監管體系還需要一定的時間和多學科、多行業的研究者和實踐者共同努力。”徐波表示,較為科學的監管體系之下,人工智能企業在符合各項標準和法規的范圍內探索良性的商業化營收模式,各院所、高校、醫院等單位合理利用各自資源,進行有效合作,有助于整個智能醫學領域的健康、穩步發展。