尹星,劉洪春,于洋
(青島地鐵集團有限公司運營分公司車輛部,山東 青島 266000)
電客車輪對各項參數的測量數據是判斷輪對是否可靠、是否達到鏇修條件的重要依據。輪對幾何參數的非接觸自動測量,可以極大地提高地鐵運營方輪對檢修的質量和效率,也有助于實現地鐵信息化管理的目標。某地鐵所采用的非接觸式輪對故障動態檢測系統,可實現輪對外形尺寸、車輪擦傷及不圓度的自動檢測。準確性通常用精度定量表征,用于衡量測量結果與真實值的一致程度,它是測量系統系統誤差和隨機誤差的綜合反映。
對某測量系統進行精度評定,通常的方法為:同一樣本,在該測量系統和另一精度更高的測量系統分別測量,對測得的數據進行處理,再依據評定準則或規定作出的評價。
(1)方法一:與精度等級更高的測量器進行直接對比,此時的精度評定可表示為:

(2)方法二:使用專用測量系統直接測量標準量塊,其精度評定可表示為:

其中,T 為標準量塊的約定真值,其與真值之差可忽略不計。
此類測量系統的測量對象形狀復雜,被測參數多,其精度評定通常采用以下兩種方法:同一樣本(個數為n),在該測量系統測得一組數據Xi,再放到精度等級更高的測量儀器測得另一組數據Yi,i=1~n,以此作為約定真值Ti。
(1)方法一:兩組測量數據差值的絕對值,共n 個,要求其都在規定范圍內,即:

該精度評定方法操作簡單,易理解。
(2)方法二:為評定樣本總體精度高低,使用精度評定通用表達式:

其中,ES為該測量系統系統誤差,S 為該測量系統測量數據的標準偏差,K 為置信因子,由置信概率的水平確定。
ES的計算過程如下:
n 個樣本在該測量系統連續測量,第i 個樣本在經過m次重復測量后取平均值:

其中,Xij為第i 個樣本在經過第j 次測量時的測量值,j=1-m。可以得出該測量系統在測量第i個樣本時的系統誤差為:

給出該測量系統的系統誤差:

為滿足電客車輪對測量與鏇修作業需要,某地鐵配備有德國赫根賽特U2000-400M 型數控不落輪鏇床,該鏇床配備有標準輪對,使用鏇床直接測量該標準輪對,以鏇床技術規格書中標準輪對的原標準尺寸為約定真值,對所得的測量數據通過數理統計方法進行處理,可求取鏇床的系統誤差。在對比輪對故障動態檢測系統測量精度時,將考慮鏇床數據測量的系統誤差,使輪對故障動態檢測系統精度評定更加可信。輪對直徑作為輪對幾何參數中的重要一項,其測量精度直接影響輪對直徑差(簡稱輪徑差)是否可靠。若輪徑差測量不可靠而導致輪對得不到及時鏇修,輪徑差會不斷增大,輪軌接觸環境進一步惡化。某地鐵關于輪徑差采用的測量技術標準是:同一軸輪徑差不超過2mm,同一轉向架輪徑差最大不超過4mm,同一節車輪徑差不超過6mm,超過此標準需進行輪對鏇修。結合生產實際,使用鏇床對標準輪對左、右側輪徑進行m=24 次測量。測試前,將標準輪對表面黃油擦拭干凈,以免對測量結果產生影響;測試過程要求在相同測量條件下,一次性連續、重復測量,中間過程無停機、標準輪對無拆裝。
鏇床技術規格書中標準輪對輪徑原標準尺寸,即約定真值左側為TBL=874.92mm、右側為TBR=873.51mm,分別求得標準偏差為σBL=0.013、σBR=0.017,可見鏇床直徑測量重復性較好。
取24 次測量數據的平均值與約定真值相減,可得鏇床直徑測量的系統誤差,求得:
左側直徑測量系統誤差為:

右側直徑測量系統誤差為:

由于鏇床直徑實際測量數據比其約定真值大,因此,對鏇床測量的M0306 車直徑數據Yi進行修正,修正后作為輪對故障動態檢測系統約定真值:左側輪徑約定真值為Ti=Yi-EUL,右側輪徑約定真值為Ti=Yi-EUR。
亦即利用(3)式進行精度直接評定。為減小輪對磨耗對結果的影響,利用鏇床測量前輪對故障動態檢測系統最近一次測量數據與鏇床測量數據進行對比,我們要求準確率σ不低于95%,亦即在48 組測量數據差值的絕對值中,僅允許有2 組超過規定的范圍(技術規格書中要求Δ=0.6mm)。計算結果表明:共48 個樣本中,有12 個超過規定值,準確率σ 為75%。因此,我們認為該輪對故障動態檢測系統的精度不符合技術要求。
為驗證上述單次測量值直接對比判定系統精度的有效性,本文又利用精度評定通用表達式(4)進行該測量系統精度評定。
(1)輪對故障動態檢測系統正態分布檢驗。輪對故障動態檢測系統為多參數綜合測量系統,求取系統誤差的方法建立在其測量數據總體服從正態分布的基礎上,因此,應首先進行正態分布檢驗。常見的正態分布檢驗方法有:擬合優度檢驗(如x2檢驗)、計算綜合統計量(如Kolmogorov-Smirnov 檢驗、Shapiro-Wilk 檢驗)、圖示法(如分位數圖,即Quantile-Quantile 圖,簡稱Q-Q 圖)。本文選用分位數圖示法,檢驗結果更為直觀。利用Minitab 軟件進行輪對故障動態檢測系統直徑測量數據正態Q-Q 圖繪制。以M030611、M030612(注:輪號最后一位數是奇數,對應左側車輪,偶數對應右側車輪)為例,分別為某一左側、右側車輪,選取m=56 次重復測量數據,分析得到P 值。P≥0.05 就基本可以認為數據服從正態分布,可以看出,共n=48 個樣本中,僅有一個車輪的P 值(0.044)小于0.05,忽略個別樣本對總體的影響,我們認為該輪對直徑測量數據總體服從正態分布。
(2)輪對故障動態檢測系統系統誤差。依據2.2 節中的(5)、(6)式求取第i 個樣本在經過m=56 次重復測量的平均值以及測量第i 個樣本時的系統誤差ESi,其中i=1~n。由(7)式求取輪對故障動態檢測系統的系統誤差ES≈0.82。由精度評定通用表達式(4)可知,由于因此,,系統精度超差。綜上兩種精度評定方法,該輪對故障動態檢測系統精度不符合技術要求。
(1)利用數控不落輪鏇床重復測量標準輪對,所得多次測量值的平均值減去標準輪對直徑原尺寸值求得該鏇床系統誤差;再利用鏇床直接測量電客車輪對,所得測量值完成系統誤差修正后作為輪對故障動態檢測系統直徑測量約定真值。
(2)分別使用單次測量值直接對比、精度評定通用表達式兩種方法對輪對故障動態檢測系統直徑測量精度進行評定,兩種評定結果均顯示該系統測量精度不符合技術要求。
(3)單次測量值直接對比方法具有較強的時效性,更符合實際,且評定結果更加直觀、簡潔,但將突出個體對總體的影響;利用精度評定通用表達式進行評定的方法,由于需要多次重復測量,時效性差,且忽略多次重復測量輪對磨耗的影響,其可信度比單次測量值直接對比方法低,但其數理統計方法消除了個體對總體的影響。綜合分析,針對軌道交通檢修時效性較強的實際,建議使用單次測量值直接對比方法進行輪對故障動態檢測系統精度評定。