王忠江,劉 卓,曹 振,李一博,張 正,王麗麗
生物炭對(duì)東北黑土持水特性的影響
王忠江1,2,劉 卓1,曹 振1,李一博1,張 正1,王麗麗1
(1. 東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030;2. 寒地農(nóng)業(yè)可再生資源利用技術(shù)與裝備黑龍江省重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150030)
為探究生物炭對(duì)東北黑土持水特性的影響,系統(tǒng)研究3種添加比例(2%、5%、10%)、3種粒徑(0.25、0.5、1 mm)的楊木炭和竹炭對(duì)3種質(zhì)地東北黑土(壤土、砂壤土、砂土)田間持水量和含水率的影響規(guī)律,構(gòu)建添加生物炭黑土的水分特征曲線,并采用Van-Genuchten和Broods-Corey模型進(jìn)行擬合。結(jié)果表明:生物炭能顯著提高不同質(zhì)地東北黑土的持水能力,黑土的田間持水量與生物炭的添加比例呈顯著正相關(guān),而與生物炭的粒徑呈負(fù)相關(guān),0.5 mm和1 mm粒徑的生物炭對(duì)黑土田間持水量的影響差異不顯著,楊木炭顯著優(yōu)于竹炭,0.25 mm、10%添加比例的楊木炭對(duì)東北黑土持水能力的提高效果最優(yōu),壤土、砂壤土、砂土3種質(zhì)地黑土的田間持水量和飽和含水率分別可提高64.97%、66.42%、69.39%和47.60%、38.93%、31.18%;Van-Genuchten模型能更精確的模擬添加生物炭黑土的水分特征曲線,最佳離心時(shí)間為100 min,三次函數(shù)曲線能夠較好的擬合添加生物炭黑土的體積含水率與離心吸力之間的多元?jiǎng)討B(tài)關(guān)系,為生物炭對(duì)各種質(zhì)地東北黑土水分運(yùn)動(dòng)規(guī)律的深入研究提供理論依據(jù)。
土壤;水分;生物炭;黑土;田間持水量;Van-Genuchten模型
中國(guó)東北黑土區(qū)是世界三大黑土帶之一,總面積約103萬km2,耕地面積29.67萬km2,占全國(guó)耕地總面積的22.2%,其中黑龍江省占15.87萬km2,是中國(guó)最大的商品糧供應(yīng)基地和綠色食品生產(chǎn)基地,每年糧食作物商品化率達(dá)87.6%,素有中國(guó)糧倉(cāng)之稱[1-2]。然而,隨著多年不合理的開發(fā)及過度的依賴化肥、農(nóng)藥等,黑土的結(jié)構(gòu)破壞明顯,持水能力和有機(jī)質(zhì)含量逐年降低,水土流失嚴(yán)重,地力等級(jí)顯著下降,使東北由“生態(tài)功能區(qū)”逐步轉(zhuǎn)變?yōu)椤吧鷳B(tài)脆弱區(qū)”[2]。截至2017年,黑龍江省水土流失面積達(dá)10.85萬km2,占土地總面積的30%以上;近30 a來,黑龍江省坡耕地黑土層厚度由墾殖前的80~100 cm下降到20~30 cm[2],有機(jī)質(zhì)含量由8%~10%下降到3%~4%[3],嚴(yán)重制約著黑土區(qū)農(nóng)業(yè)水土資源的可持續(xù)利用及農(nóng)業(yè)生態(tài)系統(tǒng)的健康發(fā)展,國(guó)家糧食安全也面臨嚴(yán)重威脅。因此,加強(qiáng)黑土地保護(hù)和治理已刻不容緩。
在眾多黑土改良措施中,生物炭在改善土壤形態(tài)結(jié)構(gòu)、提高土壤持水能力和透水性、減少地表徑流和水土流失、提升肥料利用率和作物產(chǎn)量方面更加安全、持久[3-8],成為近年來研究的熱點(diǎn)。黑土持水能力的提高是表征其理化特性改善的重要指標(biāo)之一,吳昱等[9-10]、魏永霞等[11-12]、姜佰文等[13]和王歡歡等[14]研究得出,生物炭能促進(jìn)黑土團(tuán)聚體的形成和黑土持水能力、水穩(wěn)定性的提高。但土壤持水能力的提高依賴生物炭的類型、粒徑、添加比例、土壤本身質(zhì)地等多種因素。Tryon等[15]報(bào)道,木炭可顯著增加林地棕色砂土的有效水含量,但卻使棕色黏土的有效水含量下降。解倩等[16]發(fā)現(xiàn),小于0.25 mm粒徑大添加量的雜木炭可顯著提高黃綿土的持水能力。而Wang等[17]得出,粒徑為1~2 mm的胡桃木炭對(duì)砂土田間持水量的提高效果優(yōu)于粒徑小于1 mm的炭。Doerr等[18]認(rèn)為,如果添加粒徑過小的生物炭,土壤孔隙可能會(huì)被細(xì)小的炭顆粒堵塞而導(dǎo)致土壤入滲性能下降。土壤田間持水量和土壤水分特征曲線是表征土壤水分狀態(tài)的重要參數(shù)和土壤水動(dòng)力學(xué)特征的重要指標(biāo),且描述土壤水分特征曲線模型的普適性和精確度也依賴土壤類型[19]。因此,系統(tǒng)研究添加特定生物炭的不同質(zhì)地東北黑土的田間持水量和水分特征曲線及模型的適應(yīng)性具有重要意義。
本文系統(tǒng)研究楊木炭、竹炭的粒徑、添加比例對(duì)壤土、砂壤土和砂土3種質(zhì)地黑土的田間持水量和含水率的影響,擬合黑土水動(dòng)力學(xué)模型,構(gòu)建添加生物炭黑土的水分特征曲線,探究黑土的體積含水率與離心吸力之間的多元?jiǎng)討B(tài)關(guān)系,為生物炭影響不同質(zhì)地東北黑土水分運(yùn)動(dòng)規(guī)律的深入研究提供理論依據(jù)。
試驗(yàn)所用壤土、砂壤土和砂土分別取自哈爾濱市東北農(nóng)業(yè)大學(xué)試驗(yàn)田、大慶市大同鎮(zhèn)農(nóng)田和肇源縣茂興鎮(zhèn)農(nóng)田。取樣深度為0~20 cm,過2 mm篩后密封備用。黑土的相關(guān)指標(biāo)如表1所示。

表1 黑土特性參數(shù)
試驗(yàn)所用楊木炭、竹炭購(gòu)自武漢光谷藍(lán)焰新能源股份有限公司,制備溫度為620 ℃。兩種生物炭均經(jīng)研磨后分別過0.25、0.5和1 mm篩,再經(jīng)105 ℃烘干后密封備用。生物炭的相關(guān)指標(biāo)如表2所示。

表2 生物炭特性參數(shù)
土壤田間持水量試驗(yàn)中,楊木炭和竹炭的粒徑分別為0.25(C1)、0.5(C2)和1 mm(C3),添加比例分別為2%、5%和10%,每個(gè)處理3次重復(fù)。
土壤水分特征曲線試驗(yàn)中,生物炭的粒徑和添加比例分別為0.25 mm和10%。離心吸力分別為20.57、82.28、329.12、740.52、1 316.48和2 057 cm,對(duì)應(yīng)的離心轉(zhuǎn)速分別為500(T1)、1 000(T2)、2 000(T3)、3 000(T4)、4 000(T5)和5 000 r/min(T6)。離心時(shí)間分別為20、40、60、80、100和120 min。未添加生物炭的空白純黑土組分別為S1、S2、S3、S4、S5、S6,每個(gè)處理3次重復(fù)。
土壤水分特征曲線采用離心法測(cè)定。按設(shè)定容重分層均勻裝入17 mm×33 mm濾紙筒中,浸水飽和24 h,置入裝有吸水材料的密封離心管后再放入恒溫冷凍離心機(jī)(CR-21G,日本HITACHI公司)中,待離心結(jié)束土樣達(dá)到平衡后,取土測(cè)定。
總固體含量采用(105±5)℃烘干法測(cè)定[20];土壤機(jī)械組成采用比重計(jì)法測(cè)定[21];土壤有機(jī)質(zhì)含量采用燒失法測(cè)定[22];土壤田間持水量采用威爾科克斯法測(cè)定[23];土壤pH值采用電位法測(cè)定,土水比為1∶2.5[24];生物炭pH值采用GB/T7702.16—1997標(biāo)準(zhǔn)測(cè)定方法,炭水比為1∶10[25]。生物炭比表面積和平均孔徑采用比表面積和微孔分析儀測(cè)定(JW-BK112T)。
本研究采用Van-Genuchten(VG)和Broods- Corey(BC)2種模型,其中VG模型[26-27]適用土壤的質(zhì)地范圍較廣,而BC模型[28]是常見的經(jīng)驗(yàn)?zāi)P停问骄^簡(jiǎn)單,精度較高,便于推求土壤水分運(yùn)動(dòng)參數(shù)和描述土壤水分特征曲線[19]。
1)Van- Genuchten模型

其中11(1)。
2)Broods-Corey 模型

式中為土壤體積含水率,cm3/cm3;θ為土壤殘余含水率,cm3/cm3;θ為土壤飽和含水率,cm3/cm3;h為土壤進(jìn)氣吸力,cm;為土壤吸力,cm;為擬合參數(shù)。
運(yùn)用Retention Curve(RETC)軟件擬合土壤水分特征曲線,運(yùn)用SPSS20.0分析相關(guān)性、顯著性及檢驗(yàn)擬合效果。
添加生物炭黑土的田間持水量如圖1所示。由圖1可看出,不同質(zhì)地黑土的田間持水量均隨著楊木炭、竹炭添加比例的增加而顯著增大(<0.01)。0.25、0.5、1 mm粒徑楊木炭和竹炭的添加比例為10%時(shí),壤土、砂壤土和砂土的C1楊、C2楊、C3楊與空白純?nèi)劳痢⑸叭劳梁蜕巴料啾纫来卧黾?4.97%、54.68%、54.82%,66.42%、58.09%、60.56%和69.39%、57.50%、63.30%,C1竹、C2竹、C3竹與空白純?nèi)劳痢⑸叭劳梁蜕巴料啾纫来卧黾?1.66%、40.74%、41.37%,61.54%、45.03%、43.68%和51.96%、39.13%、44.70%。C1楊各組顯著高于C2楊和C3楊各組,而C2楊和C3楊差別較小,C1竹、C2竹和C3竹各組之間也表現(xiàn)出相同的規(guī)律,說明黑土的田間持水量與楊木炭和竹炭的粒徑呈負(fù)相關(guān),但不顯著。楊木炭、竹炭的粒徑為0.25 mm,添加比例為10%時(shí),3種黑土的田間持水量最大,且楊木炭顯著優(yōu)于竹炭,添加楊木炭的壤土、砂壤土和砂土的田間持水量分別比添加竹炭的各組增加8.78%、3.02%和11.47%。同時(shí),黑土本身的質(zhì)地也直接影響其田間持水量的大小,空白純?nèi)劳痢⑸叭劳梁蜕巴恋奶镩g持水量分別為28.55%、26.65%和25.48%。粉砂粒、粘粒含量與黑土田間持水量三者互為正相關(guān),而砂粒含量與前三者均為負(fù)相關(guān)。除生物炭粒徑為1 mm的各組外,添加楊木炭砂土試驗(yàn)組田間持水量的提高幅度大于添加楊木炭的砂壤土和壤土試驗(yàn)組,但添加竹炭的3種質(zhì)地黑土田間持水量的提高幅度差異不顯著。

注:C1楊-C3楊、C1竹-C3竹分別為添加楊木炭和竹炭活性炭的粒徑0.25、0.5和1 mm。
Note: C1楊-C3楊werethe treatments with popular wood biochar and bamboo biochar size of 0.25, 0.5 and 1 mm, respectively.
圖1 生物炭對(duì)黑土田間持水量的影響
Fig.1 Effects of biochars on field capacity of black soils
添加楊木炭、竹炭黑土的水分特征曲線如圖2和圖3所示。
由圖2和圖3可看出,黑土的體積含水率均隨著離心時(shí)間、離心吸力的增加而逐漸減小,且添加楊木炭、竹炭的黑土在各吸力下的體積含水率均高于空白純黑土。添加楊木炭和竹炭的壤土、砂壤土、砂土的飽和含水率與空白純?nèi)劳痢⑸叭劳痢⑸巴料啾确謩e提高了47.60%、38.93%、31.18%和27.42%、21.76%、16.62%。添加竹炭黑土體積含水率的降低速度略低于添加楊木炭的黑土。添加楊木炭的壤土、砂壤土和砂土在離心80 min時(shí),各離心吸力下的體積含水率與初始飽和含水率相比分別降低了24.84%~60.34%、25.14%~55.08%和28.21%~67.51%,在離心80~100 min時(shí),分別降低了2.11%~8.20%、3.13%~7.64%和2.29%~11.04%;添加竹炭的壤土、砂壤土和砂土在離心100 min時(shí),各離心吸力下的體積含水率與初始飽和含水率相比分別降低了27.87%~60.55%、27.97%~62.83%和35.42%~73.86%;100 min以后,添加楊木炭和竹炭黑土體積含水率的變化幅度均小于2%。

注:楊木炭生物炭的粒徑和添加比例分別為0.25 mm和10%。T1楊-T6楊分別為離心轉(zhuǎn)速分別為500、1 000、2 000、3 000、4 000和5 000 r/min 的處理。S1黑土-S5黑土分別為未添加生物炭的空白純黑土對(duì)照。下同。

圖3 竹炭對(duì)黑土水分特征曲線的影響
不同質(zhì)地的黑土在不同離心吸力、不同離心時(shí)間條件下的體積含水率也均呈現(xiàn)壤土最大,砂壤土次之,砂土最小的規(guī)律。而且,對(duì)于同種質(zhì)地的黑土,添加楊木炭各組的體積含水率顯著高于添加竹炭的各組,該結(jié)果與黑土田間持水量的結(jié)果相一致。
運(yùn)用RETC軟件擬合離心時(shí)間為100 min時(shí)黑土的體積含水率。空白純黑土為CK組,添加楊木炭和竹炭的黑土分別為CY組和CZ組,VG模型和BC模型的擬合參數(shù)如表3所示。

表3 黑土水分特征曲線VG模型和BC模型的擬合參數(shù)
由表3可看出,VG模型的擬合優(yōu)度2均大于0.99,且明顯大于BC模型的R,說明VG模型對(duì)添加楊木炭和竹炭的3種質(zhì)地的東北黑土均適用,擬合度較好。因此,選用VG模型擬合3種質(zhì)地黑土的水分特征曲線,并對(duì)擬合參數(shù)進(jìn)行顯著性分析,具體如圖4和表4所示。

圖4 離心100min時(shí)黑土的水分特征擬合曲線
由圖4和表4可看出,離心100 min時(shí)土壤的水分特征擬合曲線與圖2和圖3中的實(shí)際結(jié)果類似,即在0~1 000 cm離心吸力范圍內(nèi),黑土的體積含水率變化較大,而當(dāng)離心吸力大于2 000 cm時(shí),曲線逐漸平緩,無明顯變化。添加楊木炭、竹炭黑土的飽和含水率和進(jìn)氣值倒數(shù)均高于空白純黑土,同種質(zhì)地的黑土比較時(shí),添加楊木炭各組的飽和含水率和進(jìn)氣值倒數(shù)也均高于添加竹炭的各組,說明楊木炭提高黑土的持水能力更強(qiáng),因?yàn)楫?dāng)進(jìn)氣值倒數(shù)越大,進(jìn)氣值越小,從黑土中排除的水越少,黑土的體積含水率則越大[29]。黑土的飽和含水率、進(jìn)氣值倒數(shù)與生物炭對(duì)黑土體積含水率的提高程度、生物炭的添加比例呈顯著正相關(guān),而形狀參數(shù)與其呈顯著負(fù)相關(guān)。離心100 min時(shí)各比較組的三次函數(shù)擬合曲線效果最好,擬合優(yōu)度2均大于0.99,顯著性水平為0.05,呈顯著性相關(guān),其回歸方程如表5所示。

表4 VG模型擬合參數(shù)的顯著性分析
注:a, b, c表示0.05水平顯著。
Note: a, b, c show significant at 0.05.

表5 回歸方程
不同質(zhì)地黑土的田間持水量均隨著生物炭添加比例的增加而增大,這是由于生物炭具有疏松多孔的結(jié)構(gòu),施入黑土后能夠改善黑土團(tuán)聚體的分布,進(jìn)而提高黑土的持水能力[30],該結(jié)果與解倩等[16]針對(duì)黃綿土的研究結(jié)果相似。同時(shí),小粒徑的生物炭更有利于提高黑土的田間持水量,0.25 mm粒徑的生物炭對(duì)黑土田間持水量的提高效果顯著優(yōu)于0.5和1 mm粒徑的生物炭,而0.5和1 mm粒徑生物炭的影響差異不顯著。楊木炭的影響效果顯著優(yōu)于竹炭,這主要是由于楊木炭的比表面積為竹炭的14.6倍,平均孔徑是竹炭的1/3,粒徑越小,其比表面積越大,吸附能力和持水能力則越強(qiáng)[31]。本試驗(yàn)中,生物炭粒徑為0.25 mm,添加比例為10%時(shí),3種質(zhì)地東北黑土的田間持水量最大。
土壤水分特征曲線受土壤類型、離心時(shí)間、離心吸力等多種因素的影響。添加生物炭的3種質(zhì)地黑土的體積含水率均隨著離心轉(zhuǎn)速的增加和離心吸力的增大而逐漸降低。高吸力時(shí)黑土體積含水率的下降速度大于低吸力時(shí),且離心時(shí)間越長(zhǎng),黑土的體積含水率越低,100 min的離心時(shí)間較優(yōu)。對(duì)比分析VG模型和BC模型的模擬結(jié)果可知,VG模型更適于模擬添加生物炭的不同質(zhì)地黑土的水分特征曲線。丁新原等[32]、王子龍等[19]比較VG模型和其他模型的土壤水分特征曲線的模擬結(jié)果也均得出VG模型模擬的精度最高。添加生物炭不同質(zhì)地黑土的飽和含水率均高于空白純黑土,且添加楊木炭的各組大于添加竹炭的各組,說明楊木炭提高黑土的持水能力更強(qiáng),這與黑土田間持水量的結(jié)果相一致。
生物炭對(duì)黑土持水特性的影響與黑土本身的質(zhì)地密切相關(guān),壤土的田間持水量及在各吸力下的體積含水率均最高,其次是砂壤土,砂土最低,這是因?yàn)橥|(zhì)量黑土中壤土的黏粒含量最大,顆粒更細(xì)、比表面積更大,其本身的持水能力也好于砂壤土和砂土[20]。
1)不同質(zhì)地黑土的田間持水量均隨著生物炭添加比例的增加而顯著增大,隨著生物炭粒徑的減小而增大,但不顯著。生物炭粒徑為0.25 mm,添加比例為10%時(shí),黑土的田間持水量最大,楊木炭顯著優(yōu)于竹炭,添加楊木炭和竹炭的壤土、砂壤土、砂土的田間持水量與空白純?nèi)劳痢⑸叭劳痢⑸巴料啾确謩e提高了64.97%、66.42%、69.39%和51.66%、61.54%、51.96%。
2)楊木炭和竹炭均能顯著提高黑土的飽和含水率,且楊木炭顯著優(yōu)于竹炭。離心法測(cè)定添加生物炭黑土的水分特征曲線的最佳離心時(shí)間為100 min;VG模型能夠更精確的模擬黑土及添加生物炭黑土的水分特征曲線;三次函數(shù)曲線能夠較好的擬合添加生物炭黑土的體積含水率與離心吸力之間的多元?jiǎng)討B(tài)關(guān)系。
3)生物炭對(duì)黑土持水特性的影響與黑土本身的質(zhì)地密切相關(guān),黑土的田間持水量及在各離心吸力下的體積含水率與其砂粒含量呈顯著負(fù)相關(guān),而與其粉砂粒和粘粒含量呈顯著正相關(guān),無論是添加生物炭黑土,還是空白純黑土,壤土的持水能力均最大,砂壤土次之,砂土最小。
[1] 李然嫣. 我國(guó)東北黑土區(qū)耕地利用與保護(hù)對(duì)策研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2017. Li Ranyan. Research on Policy Options in Utilizing and Protecting Farmland in Black Soil Region of Northeast China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract)
[2] 魏丹,匡恩俊,遲鳳琴,等. 東北黑土資源現(xiàn)狀與保護(hù)策略[J]. 黑龍江農(nóng)業(yè)科學(xué),2016(1):158-161. Wei Dan, Kuang Enjun, Chi Fengqin, et al. The present situation and protection strategy of black soil resources in northeast China[J]. Heilongjiang Agricultural Sciences, 2016(1): 158-161. (in Chinese with English abstract)
[3] 蘇鵬,賈燕鋒,曹馨月,等. 東北黑土區(qū)不同坡段等間距植物籬減流減沙特征[J]. 水土保持學(xué)報(bào),2019,33(3):22-26. Su Peng, Jia Yanfeng, Cao Xinyue, et al. Characteristics of runoff and sediment reduction by equidistant hedgerows at different slope sections in northeast black soil area[J]. Journal of Soil and Water Conservation, 2019, 33(3): 22-26. (in Chinese with English abstract)
[4] 陳月明,裴隆翠,崔鋼,等. 不同水土保持植被對(duì)典型黑土微團(tuán)聚體穩(wěn)定性的影響[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2019,47(6):26-30. Chen Yueming, Pei Longcui, Cui Gang, et al. Effect of soil and water conservation vegetation on the stability of micro-aggregates in typical black soil region[J]. Journal of Northeast for Forestry University, 2019, 47(6): 26-30. (in Chinese with English abstract)
[5] 牛曉樂,秦富倉(cāng),楊振奇,等. 黑土區(qū)坡耕地幾種耕作措施水土保持效益研究[J]. 灌溉排水學(xué)報(bào),2019,38(5):67-72. Niu Xiaole, Qin Fucang, Yang Zhenqi, et al. Efficacy of several tillages in conserving soil and water in slopping areas at the black soil in northwest China[J]. Journal of Irrigation and Drainage, 2019, 38(5): 67-72. (in Chinese with English abstract)
[6] Chan K Y, Van Z L, Meszaros I, et al. Using poultry litter biochars as soil amendments[J]. Australian Journal of Soil Research, 2008, 46: 437-444.
[7] Meng L L, Sun T, Li M Y, et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress[J]. Ecotoxicology and Environmental Safety, 2019, 171: 75-83.
[8] Feng L, Li G T, Lin Q M, et al. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil[J]. Journal of Integrative Agriculture, 2014, 13: 525-532.
[9] 吳昱,趙雨森,劉慧. 不同的生物炭施用量和施用年限對(duì)土壤結(jié)構(gòu)性指標(biāo)的影響[J]. 水利科學(xué)與寒區(qū)工程,2019,2(3):5-11. Wu Yu, Zhao Yusen, Liu Hui. Effects on index of soil structure for amount and years of biochar apply[J]. Hydro Science and Cold Zone Engineering, 2019, 2(3): 5-11. (in Chinese with English abstract)
[10] 吳昱,劉慧,楊愛崢,等. 黑土區(qū)坡耕地施加生物炭對(duì)水土流失的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):287-294. Wu Yu, Liu Hui, Yang Aizheng, et al. Influences of biochar supply on water and soil erosion in slopping farm-land of black soil region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 287-294. (in Chinese with English abstract)
[11] 魏永霞,石國(guó)新,馮超,等. 黑土區(qū)坡耕地施加生物炭對(duì)土壤結(jié)構(gòu)、肥力與大豆產(chǎn)量的影響[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), http: //kns. cnki. net/kcms/detail/11. 1964. S. 20 190 510. 1534. 002. html. Wei Yongxia, Shi Guoxin, Feng Chao, et al. Effects of applying biochar on soil structure, fertility and soybean yield on slope farmland in black soil region[J/OL]. Transactions of the Chinese Society for Agricultural Machinery. http: //kns. cnki. net/kcms/detail/11. 1964. S. 20 190510. 1534. 002. html. (in Chinese with English abstract)
[12] 魏永霞,王鶴,劉慧,等. 生物炭對(duì)黑土區(qū)土壤水分及其入滲性能的影響[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào). http: //kns. cnki. net/kcms/detail/11. 1964. S. 20190605. 1031. 016. html. Wei Yongxia, Wang He, Liu Hui, et al. Effect of biochar on soil moisture and its infiltration performance in blacksoil area[J/OL]. Transactions of the Chinese Society for Agricultural Machinery. http: //kns. cnki. net/kcms/detail/11. 1964. S. 20190605. 1031. 016. html. (in Chinese with English abstract)
[13] 姜佰文,梁世鵬,張迪,等. 耕作與施肥對(duì)黑土團(tuán)聚體粒級(jí)分布及水穩(wěn)定性的影響[J/OL]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,50(7). http: //kns. cnki. net/kcms/ detail/ 23. 1391. S. 20190711. 1505. 010. html. Jiang Baiwen, Liang Shipeng, Zhang Di, et al. Effect of tillage and fertilization on particle size distribution and water stability of black soil aggregate[J/OL]. Journal of Northeast Agricultural University, 2019, 50(7). http: //kns. cnki. net/kcms/detail/23. 1391. S. 20190711. 1505. 010. html. (in Chinese with English abstract)
[14] 王歡歡,元野,任天寶,等. 生物炭對(duì)東北黑土理化性質(zhì)影響研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),2018,34(35):67-71. Wang Huanghuan, Yuan Ye, Ren Tianbao, et al. Influence of biochar on the physicochemical properties of black soil in northeast China[J]. Chinese Agricultural Science Bulletin, 2018, 34(35): 67-71. (in Chinese with English abstract)
[15] Tryon E H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils[J]. Journal of Ecological Monographs, 1948, 18(1): 81-115.
[16] 解倩,王麗梅,齊瑞鵬,等. 生物炭對(duì)黃綿土水分入滲和持水性能的影響[J]. 地球環(huán)境學(xué)報(bào),2016,7(1):65-76,86. Xie Qian, Wang Limei, Qi Ruipeng, et al. Effects of biochar on water in? ltration and water holding capacity of loessial soil[J]. Journal of Earth Environment, 2016, 7 (1): 65-76, 86. (in Chinese with English abstract)
[17] Wang D Y, Li C Y, Parikh S J, et al. Impact of biochar on water retention of two agricultural soils: A multi-scale analysis[J]. Geoderma, 2019, 340: 185-191.
[18] Doerr S H, Shakesby R A and Walsh R P D. Soil water repellency: its causes, characteristics and hydrogeomorphological signi?cance[J]. Earth Science Reviews, 2000, 51(1/2/3/4): 33-65.
[19] 王子龍,常廣義,姜秋香,等. 黑土區(qū)土壤水分特征曲線模擬及模型優(yōu)選[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,49(9):36-43. Wang Zilong, Chang Guangyi, Jiang Qiuxiang, et al. Simulation and models optimization of soil water characteristic curve in black soil region[J]. Journal of Northeast Agricultural University, 2018, 49(9): 36-43. (in Chinese with English abstract)
[20] Wang L L, Wu J, Wang Z J, et al. Effects of three biochars as adsorbents on soils adsorbing ammonium nitrogen in biogas slurry[J/OL]. Journal of Chemistry, 2017, Article ID 4627928. http: // doi. org/10. 1155/2017/ 4627928
[21] 陳麗瓊. 比重計(jì)法測(cè)定土壤顆粒組成的研究[J]. 環(huán)境科學(xué)導(dǎo)刊,2010,29(4):97-99. Chen Liqiong. Study on determination of soil particle composition by hydrometer[J]. Environmental Science Survey, 2010, 29(4): 97-99. (in Chinese with English abstract)
[22] Wang L L, Li W Z, Wang Z J, et al. Effects of digestate application depth on soil nitrogen volatilization and vertical distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 101-107.
[23] 江培福,雷廷武,劉曉輝,等. 用毛細(xì)吸滲原理快速測(cè)量土壤田間持水量的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):1-5. Jiang Peifu, Lei Tingwu, Liu Xiaohui, et al. Principles and experimental verification of capillary suction method for fast measurement of field capacity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 1-5. (in Chinese with English abstract)
[24] 李強(qiáng),文喚成,胡彩榮. 土壤pH 值的測(cè)定國(guó)際國(guó)內(nèi)方法差異研究[J]. 土壤,2007,39(3):488-491. Li Qiang, Wen Huancheng, Hu Cairong. Difference between international and domestic methods in determining soil pH[J]. Soils, 2007, 39(3): 488-491. (in Chinese with English abstract)
[25] 程桂芳. 煤質(zhì)活性炭pH值測(cè)定方法的比較和建議[J]. 煤炭加工與綜合利用,2014(5):45-47. Cheng Guifang. Comparison and suggestion on determination of pH value of coal-based activated carbon[J]. Coal Processing & Comprehensive Utilization, 2014(5): 45-47. (in Chinese with English abstract)
[26] Lu N, Dong Y.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 892-898.
[27] Mualem Y. A new model for predicting the hydraulic conducticity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522.
[28] 來劍斌,王全九. 土壤水分特征曲線模型比較分析[J]. 水土保持學(xué)報(bào),2003(1):137-140. Lai Jianbin, Wang Quanjiu. Comparison of soil water retention curve model[J]. Journal of Soil and Water Conservation, 2003(1): 137-140. (in Chinese with English abstract)
[29] 魏永霞,劉志凱,馮鼎銳,等. 生物炭對(duì)草甸黑土物理性質(zhì)及雨后水分動(dòng)態(tài)變化的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(8):201-207. Wei Yongxia, Liu Zhikai, Feng Dingrui, et al. Influences of biochar on physical properties of meadow black soil and dynamic changes of soil water after individual rainfall[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 201-207. (in Chinese with English abstract)
[30] Mandal S, Thangarajan R, Bolan N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127.
[31] Lone A H, Najar G R, Ganie M A, et al. Biochar for sustainable soil health: A review of prospects and concerns[J]. Pedosphere, 2015, 25(5): 639-653.
[32] 丁新原,周智彬,雷加強(qiáng),等. 塔里木沙漠公路防護(hù)林土壤水分特征曲線模型分析與比較[J]. 干旱區(qū)地理,2015,38(5):985-993. Ding Xinyuan, Zhou Zhibin, Lei Jiaqiang, et al. Analysis and comparison of models for soil water characteristic curves of Tarim Desert Highway Shelterbelt[J]. Arid Land Geography, 2015, 38(5): 985-993. (in Chinese with English abstract)
Effect of biochars on water retention properties of northeast region black soils
Wang Zhongjiang1,2, Liu Zhuo1, Cao Zhen1, Li Yibo1, Zhang Zheng1, Wang Lili1
(1.,,150030,;2.,150030)
The water retention capacities and organic matter content of valuable black soil is decreasing year by year with unreasonable farming and excessive dependence on chemical fertilizers and pesticides continuously. Black soil erosion is serious and black soil layer is less and less. It is urgent to protect black soil resource. Biochar is recognized gradually in recent years for improving soil structure, soil water retention capacity and crop yield, and for reducing surface runoff and soil erosion as a soil conditioner. However, most researches focus on the improvement in the acidic soil and sandy soil with less organic matter because of the high pH of biochar and the relative good fertility of black soil. The application of biochar in black soil in northeast region is relatively rare. The water retention capacity improvement is one of the important indexes to characterize the physical and chemical properties of black soil. In this paper, the effects of biochars including poplar wood carbon and bamboo carbon on the water retention properties of loamy soil, sandy loam and sandy soil were studied systematically with three different addition ratios (2%, 5%, 10%) and three different particle sizes (0.25, 0.5, 1 mm) of biochars. The water characteristic curves of different northeast black soils added with biochars were studied by the centrifugation method, and were fitted by the models of Van-Genuchten and Broods-Corey. The results showed that the field capacity and the saturated moisture content of loamy soil, sandy loam and sandy soil all increased significantly because of biochars addition. The field capacity of black soils increased significantly with the increase of addition ratios of biochars, but decreased with the increase of particle sizes of biochars. However, an insignificant difference in 0.5 and 1 mm particle sizes was achieved. The effects of poplar wood carbon on the water retention properties of black soils were superior to those of bamboo carbon, significantly. The particle size of 0.25 mm and addition ratio of 10% was optimum for poplar wood carbon to achieve high water retention capacities of northeast black soils. Under optimum condition, the field capacity and the saturated moisture content increased by 64.97% and 47.60% for loamy soil, 66.42% and 38.93% for sandy loam, and 69.39% and 31.18% for sandy soil, respectively. Furthermore, the effect of grain size distribution of black soil itself on its water retention properties was significant. A negative relationship was between soil field capacity and sand particle content of soil. However, the soil field capacity increased significantly with the increase of the silt and clay particle content of soil. Loamy soil has the largest water holding capacity, followed by sandy loam.The water holding capacity of sandy soil was the smallest. Moreover, the water characteristic curves of three black soils with biochar addition decreased gradually with thethe increase of centrifugal time and suction. Van-Genuchten model fitted the water characteristic curves of three black soils, more precisely. All the fit goodness of cubic curves simulating the relationship of soil volume moisture content and suction were more than 0.99. Centrifugation time of 100 min was optimum. The results in this study provided good insight into the effects of biochars on the water retention properties of different black soils in the northeast region.
soils; moisture; biochar; black soil; field capacity; Van-Genuchten model
2019-04-12
2019-08-25
國(guó)家自然科學(xué)基金項(xiàng)目(51406032)、中央引導(dǎo)地方科技發(fā)展專項(xiàng)(ZY17C05)、東北農(nóng)業(yè)大學(xué)“學(xué)術(shù)骨干”項(xiàng)目(18XG15)
王忠江,教授,主要從事農(nóng)業(yè)生物環(huán)境與能源工程研究。E-mail:neauwzj@126.com.
10.11975/j.issn.1002-6819.2019.17.018
S141.4
A
1002-6819(2019)-17-0147-07
王忠江,劉 卓,曹 振,李一博,張 正,王麗麗. 生物炭對(duì)東北黑土持水特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):147-153. doi:10.11975/j.issn.1002-6819.2019.17.018 http://www.tcsae.org
Wang Zhongjiang, Liu Zhuo, Cao Zhen, Li Yibo, Zhang Zheng, Wang Lili. Effect of biochars on water retention properties of northeast region black soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 147-153. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.018 http://www.tcsae.org