單春花

摘要:高中數學在學生的數學學習過程中有著舉足輕重的作用,它既是區別于初中數學的基礎應用,有知識升華的方面,又是高校數學的簡化理論基礎,有知識奠基的方面。可以說,是承上啟下的重要學習階段。隨著教育形式的變化、理念的發展,數學在課堂教學中的滲透也有著不同的思想和能力變化,建模思想與能力就是其中的一種。建模思想能夠提升數學的應用水平,建模能力能夠提升學生的靈活思維水準,是高中數學學習中不可獲取的思想和能力之一。本文主要討論在日常的高中數學教學中,是如何將建模的數學思想融入進行,并如何培養學生的建模能力的。從而利用得出的相關理論,應用在高中數學教學中,完成對學生數學素養的培養。
關鍵詞:數學建模;建模思想;課堂教學
一、數學建模思想及方法
1.數學建模思想
數學建模思想,簡單的說就是采用嚴謹的數學語言對實際應用問題進行描述的過程,這個數學描述出的事物,就是數學模型,構建描述的過程就是數學建模。
數學建模是一種應用性很強的數學。它的作用是能夠將實際的應用問題,通過數學語言的描述、分析最終簡化為一個數學問題,能夠更加容易的通過數學的方法進行解決。也就是說,它既是一個問題的解決方法,同時也是一個數學的思考方法。
數學建模能夠有效的解決問題,在日常高中數學教學中,教師通過建模思想和能力的培養,能夠有效的提升學生的數學核心素養,培養學生的數學思維和分析問題的能力。高中學生已經在數學與現實世界的關系上有了一個初步的認識,建模思想能夠在這種認識的基礎上,建立起數學數量和空間之間的聯系,建立起高中生的數學模型構建概念。
2.數學建模的方法
數學建模就是要利用數學理論知識、方法,以及數學語言,解決常見的問題,所以要首先對于問題轉化成數學問題、然后所所涉及的問題進行數學抽象化的模型建設,建設之后,要對數學模型求解,并分析求解結果,最后對得出的模型結果進行檢驗。這個過程,在高中的數學解題中,有著很重要的作用,其具體的解題過程,如圖1所示。
二、高中數學建模思想與能力在課堂教學中的滲透
1.數學建模思想的建立
高中教材中,對于幾何思想和數學思想,都有著比較高頻率的涉及。同時對于幾何和數學之間的模型建立,也有著重點的介紹。人教版高中數學必修一第三章,《函數的應用》中,3.1《函數與方程》中就涉及到了數學知識和幾何知識的雙重應用,同時3.2《函數模型及其應用》中,直接的增加了數學教學中的建模思想的教學內容。之所以在高一的數學教學內容中,添加數學模型的應用,就是為了從頭開始,將數學建模的思想建立起來,并逐漸的滲透到之后的數學教學中。在函數方程的學習中,學生可以通過撞我的數據及材料,對方程進行延伸,采用變化和變形的處理方式,讓方程的求解更為的簡單化。要注意不斷的將解決模型和結果進行比對,完成數學方程和實際生活的應用關聯。這是一個基礎的建立,是學生建立起數學模型概念在學習中應用的思想的關鍵基礎。能夠拓展今后學習的思路,以及解題的方法。
2.結合建模研究課題,完成數學建模能力培養
在人教版高中數學教材必修二第二章《點、直線、瓶罐之間的位置關系》中,前三部分內容分別是2.1《空間點、直線、平面之間的位置關系》、2.2《直線、平面平行的判定及其性質》、2.3《直線、平面垂直的判定及其性質》,這幾課主要都是數學和幾何的理論問題,在進行這些理論基礎的教學后,最后一課增加了一節建模研究課題的教學內容《閱讀與思考,歐幾里得<原本>與公理化方法》。這一研究課題的增加,正是基于數學建模思想能力的培養。歐幾里得<原本>在幾何領域中的地位非比尋常,其中多數的內容,都可以成為有研究價值的數學建模研究課題。這些研究課題,能夠提升學生自身的數學建模能力,對于空間幾何、數學邏輯思維等,都有很強的應用學習價值。研究性的課題開展能夠鞏固前幾課的理論知識學習,同時能夠培養學生的數學建模能力,讓學生在數學學習中掌握思維發散,以及動手能力。
3.通過數學建模探究學習培養創新能力
探究式的學習活動,是目前教學改革中的焦點。這就讓學生有機會在課堂學習中去解決實際問題。人教版高中數學教材必修二第四章最后一課就是這樣的探究式學習內容,《信息技術應用,用<幾何畫板>探究點的軌跡:圓》。這個探究學習能夠是關于“圓”的探究。這就要求學生對于其各種方式,各種問題,各種方面都能夠有全面的掌握,并能夠據此開展思維的擴展,培養自身創新的能力。
結語:
在高中數學的教學中,建模思想的建立有助于學生的解決問題能力的提升、分析問題能力的培養,以及創新思維的培養。數學建模的應用,將對學生的數學綜合核心素養進行建立和提升。數學建模思想與能力在高中數學課堂教學中的滲透,將會在未來的高中生數學學習中,起到重要的作用。
參考文獻:
[1]鄔健.如何在高中數學教學中更好地融入建模思想[J].學周刊,2018(36):57-58.
[2]楊婧.將建模思想融入高中數學日常教學的策略研究[J].名師在線,2018(29):34-35.
[3]胡靖.高中數學建模思想與創新能力的培養策略[J].科技經濟導刊,2018(01):161-162.