李嶺 徐文靜 唐燁偉 單凈璇



在初中數學的課堂教學中,邏輯推理、數學建模、直觀想象和數據分析等的理解和掌握對學生來說都有相當大的困難,而如果借助信息技術手段,則能夠使教學變得更加便捷。教師可以利用信息技術對抽象難懂的幾何圖形進行處理,使得靜態、晦澀難懂的圖形動起來,讓學生更易理解和掌握,這在一定程度上也有效促進了學生與教師、資源之間的多元互動。同時,要求學生借助信息技術手段查找課堂所需的教學資源,完成常規教學條件下難以進行的數學實驗,轉變學生的學習方式,讓學生積極主動地去學習,激發學生的學習興趣,培養學生的自學能力、動手能力和解決問題的能力,突出學生在課堂教學中的主體地位,最終提高課堂的教學效率。
● 《圓周角》中的教學困難
在學習圓周角與圓心角的關系時,傳統教學方式是教師讓學生先在圓上畫出不同的圓周角,然后用量角器量出它的度數,記錄在表中,通過多測量一些不同的角,來歸納和分析出圓周角和圓心角的關系。這樣雖然能得出相應的結論,但總是存在測量的誤差,并且在課堂中需要花費大量的時間去畫不同的角并且測量。
● 解決方法
通過觀看Google Earth視頻,創設生活情境,讓學生更快速地融入情境,投入到學習狀態中;通過交互式電子白板為學生展示一組圖形,學生在辨別圓周角過程中,類比出圓周角的定義;利用幾何畫板動態演示,形象直觀地展示出隨著圓周上點的移動半徑大小改變,但同弧所對的圓周角度數不變,從而探索出圓周角和圓心角的關系;讓學生利用平板電腦以彈幕的形式積極表達自己本節課的收獲和反思,讓學生勇于表達。
《圓周角》教學設計
案例設計
1.教學內容分析
《圓周角》是蘇教版九年級上冊數學第二章的內容,是在圓和圓心角的基本概念和性質的基礎上,對圓周角的性質進行探索。圓周角的性質在圓的說理、作圖、計算中有著廣泛的應用,同時也是學習圓的后續知識的重要預備知識,在教材中起著承上啟下的作用。除此之外,圓周角的性質也是說明線段相等、角相等的重要依據之一。
2.學情分析
從學生的認知規律來看,九年級的學生有較強的自我發展意識,對“有挑戰性”的任務比較感興趣;從思維特點來看,學生的思維活躍,但思維往往依賴直觀具體的形象,學生現在已具備了簡單演繹推理的能力;從已有知識經驗來看,學生已經學習了圓心角、弧、弦等概念以及圓心角的性質,具有了相應的知識基礎,并且具備一定的數學探究活動經驗,這就為自主探究、動手實驗、討論交流、嘗試證明做好了準備。
3.教學目標
知識與技能目標:了解圓周角的概念并證明圓周角定理,探索圓周角與圓心角及其所對弧的關系。
過程與方法目標:通過對圓周角定理的探索,經歷發現、構想和歸納的智慧思維過程,體會分類、化歸、由特殊到一般等數學思想,學會從數學的角度思考問題。
情感態度與價值觀目標:積極參與數學活動,在探索、交流的過程中增強合作能力,通過解決問題增強自信心,培養數學的應用能力。
4.教學重難點
利用幾何畫板探索圓周角與圓心角的關系;通過分類討論,推理和驗證“圓周角與圓心角的關系”。
5.教學方法
本節課以微信任務推動教學,情境與教學內容雙主線并行。學生通過觀察發現、自主探索、合作交流,探究圓周角和圓心角的關系并驗證。教師設置情境化的課堂學習任務單,多種信息技術手段輔助(交互式電子白板、幾何畫板、平板電腦、微課、理想云平臺等)啟發式設疑引導學生,并最終幫助學生完成對圓周角定義、圓周角定理及其應用知識體系的構建。
6.教學過程
本節課分三個步驟開展教學(如圖1):課前創設情境,提出問題;課中自主探究、交流分享和鞏固新知;課后分層練習,因材施教。
(1)課前創設情境,提出問題
教師活動:導入Google Earth視頻,介紹棕櫚島;向學生展示收到的老版微信,提出修橋問題。
學生活動:觀看教師提供的視頻,并進行小組間的討論,嘗試建立模型。
設計意圖:通過Google Earth視頻,交叉學科融合,點滴滲透人文關懷;通過微信提出問題,引導學生學會在具體情境中從數學的角度發現問題和提出問題,培養模型思想。
支撐條件:教師利用電子書包為學生推送“Google Earth”視頻和微信聊天截圖,讓學生明確本節課的學習任務。
學習成果:學生明確了本節課的學習任務,并且學會了在具體情境中從數學的角度發現和提出問題。
(2)課中自主探究、交流分享和鞏固新知
教師活動:提供三家公司的二維碼及對應知識點,引導學生一起總結出解決問題的思路;移動小船位置,引導學生總結特征,得出圓周角的定義;引導學生自主探索圓周角與圓心角的關系;引導學生解決修橋問題。
學生活動:①畫圖,建模;②掃描二維碼,小組交流,分析方案;③通過觀察,類比圓心角的概念,討論圓周角的定義;④觀看演示,小組討論,得出猜想;⑤觀看幾何畫板的運動,分三種情形畫出圖形,寫出證明過程,拍照上傳,并自己演示講解;⑥解決修橋問題。
設計意圖:①將傳統的復習舊知以二維碼掃描的方式在提出問題后融入課堂,讓學生決定復習時間、復習內容,自主尋求學習支架,從已有知識體系中提取有用信息,尋找與新知之間的聯系;②通過觀察,引導學生發現頂點在圓周上的角與其他角的不同,類比圓心角的概念給出圓周角的定義(如圖2);③概念的辨析環節是教學中不可缺少的一部分,這將為后續知識的講解做鋪墊;④通過幾何畫板具體數值的形象直觀的展示(如圖3),引導學生進行不完全歸納,演繹推理,大膽猜想,體會從特殊到一般的教學思想。
支撐條件:①教師利用電子書包為學生提供二維碼;②教師用幾何畫板為學生演示圓周角與圓心角的關系;③教師利用電子書包的推屏演示功能展示學生的探究過程;④教師利用電子書包為學生發送利用Camtasia Studio軟件錄制的微課。
學習成果:學生從已有的知識體系中提取了有用的信息,并與新知之間建立了聯系;學生通過類比,給出了圓周角的定義。
(3)課后分層練習,因材施教
教師活動:課后利用理想人人通的教師端為學生提供不同難度梯度的練習題,進一步鞏固本節課所學內容。
學生活動:利用理想人人通的學生端做練習題,自測本節課學習情況。
設計意圖:尊重學生的個體差異,分層布置作業,滿足不同層次學生的學習需求,讓作業成為課堂的延伸,也成為學生能力提升的機會。
支撐條件:教師利用理想人人通的教師端為學生提供練習題,學生利用學生端進行練習,并提交答案。
學習成果:學生通過完成與自己學習情況相適應的習題,對本節課內容有了更為深刻的理解。
智慧反思
在本案例中,筆者通過為學生提供三家公司的二維碼,讓學生復習對應的知識點,引導學生總結出解決問題的思路,并寫在課堂學習任務單上。將傳統的復習舊知以二維碼掃描的方式在提出問題后融入課堂,讓學生決定復習時間和復習內容,自主尋求學習支架,從已有的知識體系中提取出有用信息,試圖尋找舊知與新知之間的聯系。通過這種掃描二維碼的方式讓學生積極主動地參與到課堂教學中,并且能夠建立起新舊知之間的聯系。
考慮到每位學生的學習水平不同,接受能力也不相同,筆者還為學生提供了不同難度梯度的練習題,通過利用理想人人通,將作業分為基礎、綜合、拓展三個層面,分層布置作業,并且在相對應的習題后提供對應的微課,幫助學生更好地掌握知識點。這樣既能夠尊重學生的個體差異,滿足不同層次學生的學習需求,又能夠讓作業成為課堂的延伸,也成為學生能力提升的機會。