李思雯 王亞鳳 何瑞杰 戴天歌 李典鵬 黃永林

摘 要:? 瓦山錐植物富含植物多酚類成分且資源豐富,目前尚無該植物化學成分及生物活性方面的報道。為了明確瓦山錐的物質基礎,為該植物資源的合理開發與可持續利用提供科學依據,該研究采用Sephadex LH-20、Diaion HP20SS、Toyopearl HW-40F等多種柱層析方法對瓦山錐樹葉乙醇提取物進行分離純化,從中得到11個單體化合物,它們的結構經波譜數據分析及文獻對照鑒定為沒食子酸(1)、咖啡酸(2)、1-(3′, 4′-二羥基肉桂酰)-環戊-2,3-二酚(3)、綠原酸(4)、綠原酸甲酯(5)、kaempferol 3-O-β-D-glucuronopyranoside(6)、kaempferol 3-O-{β-D-xylopyranosyl-(1→2)- [α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside}(7)、quercetin 3-O-β-D-glucuronopyranoside(8)、quercetin 3-O-β-glucuronide-6″-methyl ester(9)、蘆丁(10)、quercetin 5-O- [α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside(11)。所有化合物均為首次從瓦山錐中分離得到,其中化合物3,7-11為首次從錐屬植物中分離得到。
關鍵詞: 瓦山錐, 化學成分, 結構鑒定, 植物多酚
中圖分類號:? Q946
文獻標識碼:? A
文章編號:? 1000-3142(2020)05-0648-06
Chemical constituents from Castanopsis ceratacantha (Ⅰ)
LI Siwen1,2, WANG Yafeng2, HE Ruijie2, DAI Tiange1,LI Dianpeng2, HUANG Yonglin2*
( 1. Guilin Medical University, Guilin 541004, Guangxi, China; 2. Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China )
Abstract:? Castanopsis ceratacantha contains large amounts of polyphenols and abounds in natural resources, but its chemical constituents and biological activities have not been reported. In order to clarify the chemical basis of the plant and provide scientific basis for the rational development and sustainable utilization of the plant resources. The ethanol extracts of C. ceratacantha were isolated and purified by various chromatographic methods such as Sephadex LH-20, Diaion HP20SS, and Toyopearl HW-40F to yield 11 compounds. Their structures were elucidated by spectroscopic data and comparison with literatures as gallic acid (1), caffeic acid (2), 1-(3′,4′-dihydroxycinnamoyl)-cyclopenta-2,3-diol (3), chlorogenic acid (4), chlorogenic acid methyl ester (5), kaempferol 3-O-β-D-glucuronopyranoside (6), kaempferol 3-O-{β-D-xylopyranosyl-(1→2)- [α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside} (7), quercetin 3-O-β-D-glucuronopyranoside (8) , quercetin 3-O-β-glucuronide-6″-methyl ester (9), rutin (10), and quercetin 5-O- [α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside (11). All these compounds were obtained from this plant for the first time,and compounds 3, 7-11 were isolated from the genus Castanopsis for the first time.
Key words:? Castanopsis ceratacantha, chemical constituents, structural identification, polyphenols
殼斗科(Fagaceae)錐屬(Castanopsis)植物為常綠喬木,我國約有63種2變種,產長江以南各地(中國科學院中國植物志編輯委員會,1998)。現有研究表明,錐屬植物主要含有多酚類成分,具有很好的抗氧化生理活性及市場開發前景(王亞鳳等, 2016)。瓦山錐(Castanopsis ceratacantha)為殼斗科錐屬(Castanopsis)植物,又名瓦山栲、黃山栲等,喬木,通常高8~15 m,在我國主要分布于云南、貴州、四川等省,在老撾、泰國東北部也有分布(中國科學院中國植物志編輯委員會,1998)。瓦山錐民間廣泛用于止血、止渴、止瀉(堅果)、慢性潰瘍(葉)等疾病的治療,主要應用在醫藥行業、食品行業、日化行業以及生化行業等領域。
本實驗選取錐屬植物瓦山錐作為研究對象,目的在于豐富錐屬植物的化學成分,掌握瓦山錐的藥效物質基礎,為瓦山錐的合理開發與可持續利用奠定基礎。此外,通過對錐屬植物瓦山錐化學成分的研究,為在經典分類中系統位置有爭議的殼斗科植物提供依據。
本研究以瓦山錐葉為原料,80%乙醇作為提取溶劑,通過Sephadex LH-20、Chromatorex C18、Diaion HP20SS、Toyopearl HW-40F等柱色譜層析,從瓦山錐葉乙醇提取物中分離得到11個單體化合物,經波譜數據分析及與文獻比較鑒定了化合物的結構,所分離得到的成分主要為植物多酚類成分。化合物1-15結構式見圖1所示。
1 材料與方法
1.1 材料和儀器
材料于2017年8月采自云南省景洪市,經廣西壯族自治區中國科學院廣西植物研究所丁濤副研究員鑒定為殼斗科錐屬植物瓦山錐(Castanopsis ceratacantha)的樹葉。
Brucker Avance 500 MHz超導核磁共振波譜儀(瑞典Bruker);N-1100 旋轉蒸發儀(東京理化);CA-1111 冷卻水循環儀(東京理化);自動接收儀(日本Advantec);F254硅膠薄層板(德國默克);Sephadex LH-20(GE Healthcare Bio-Science AB);Chromatorex C18(日本Fuji Silysia Chemical);Diaion HP20SS(Mistubishi Chemical);Toyopearl HW-40F(日本TOSOH公司);Sephadex LH-20(GE Healthcare Bio-Science AB);提取、分離所用試劑均為分析純。
1.2 提取和分離
取干燥瓦山錐葉3.5 kg,切成碎片后用80%乙醇室溫浸提2次,每次32 L,每次7 d,合并提取液并過濾,濾液經減壓濃縮后得浸膏481.3 g。浸膏水溶解后經Sephadex LH-20柱(8.5 cm × 40 cm)層析分離,甲醇-水(0~100%,每20%為1梯度)和60%丙酮-水溶液洗脫(每1梯度2 L),經薄層層析分析合并,得到8個流份:Fr.1~8。Fr.1(10.0 g)經Diaion HP20SS、Chromatorex C18、Sephadex LH-20等色譜柱反復層析分離純化得到化合物6(88 mg)、8(800 mg)、10(48 mg)。Fr.2(69.1 g)經Diaion HP20SS、Toyopearl HW-40F等色譜柱反復層析分離純化得到化合物1(28 mg)、2(132 mg)、3(13 mg)、4(148 mg)、5(214 mg)、7(49 mg)、9(74 mg)、11(26 mg)。
2 結構鑒定
化合物1 C7H6O5, 白色粉末。HR-ESI-MS
BINA SS, NASIMA K, SABIRA B, et al., 2012. Flavonoid and cardenolide glycosides and a pentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity? [J]. Phytochemistry, 77: 238-244.
CHEN QH, HUANG Y, ZHOU JJ, et al., 2017. Chemical constituents from leaves of Camellia nitidissima var. longistyla (II)? [J]. Chin Trad Herb Drugs, 48(23): 4845-4850.? [陳秋虹, 黃艷, 周潔潔, 等, 2017. 長柱金花茶葉的化學成分研究(II) [J]. 中草藥, 48(23):? 4845-4850.]
Chinese Botanical Society Editorial Board of Chinese Academy of Sciences, 1998. Flora Reipublicae Popularis Sinicae? [M]. Beijing: Science Press, 22:13, 69.? [中國科學院中國植物志編輯委員會, 1998. 中國植物志 [M]. 北京: 科學出版社, 22: 13, 69.]
DU ZZ, YANG XW, HAN H, et al., 2010. A new flavone C-glycoside from Clematis rehderiana? [J]. Molecules, 5(1): 15: 672-679.
HARI PD, SENA M, SHOJI Y, 2017. Amentoflavone and kaempferol glycosides from the aerial parts of Cissampelos pareira? [J]. Biotechnology, 5(1): 1-4.
HE ZN, LIAN WW, LIU JW, et al., 2017. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli? [J]. Phytochem Lett, 19: 160-167.
Jiangsu New Medical School, 1977. Traditional Chinese Medicine Dictionary: The first and the second? [M]. Shanghai: Shanghai Peoples Publishing House.? [江蘇新醫學院, 1977, 中藥大辭典(上、下兩冊)? [M]. 上海:上海人民出版社.]
LI CD, BEI LW, JIAN MC, 2008. Flavonoid triglycosides from the seeds of Camellia oleifera Abel? [J]. Chin Chem Lett, 19: 1315-1318.
LI S, LIU YH, 2015. Chemical constituents with antioxidative activity from the flower buds of Lonicera serreana? [J]. Guihaia, 35(4): 586-589.? [李樹, 劉玉衡, 2015. 毛藥忍冬花蕾抗氧化活性部位化學成分研究 [J]. 廣西植物, 35(4): 586-589.]
PU SC, GUO YQ, GAO WY, et al., 2010. Chemical constituents from Hydrocotyle sibthorpioides? [J]. Chin Trad Herb Drugs, 41(9): 1440-1442.? [蒲首丞, 郭遠強, 高文遠, 2010. 天胡荽化學成分的研究? [J]. 中草藥, 41(9): 1440-1442.]
WANG YF, HUANG YL, LIU JL, et al., 2016. Content and antioxidant capacity of polyhenols from the Fagaceae plants? [J]. Guangxi Sci, 23(2):180-183.? [王亞鳳, 黃永林, 劉金磊, 等, 2016. 殼斗科植物種子的多酚類含量及抗氧化能力? [J]. 廣西科學, 23(2):180-183.]
WEI H, YANG JW, YAN XJ, et al., 2018. Chemical constituents from walnut green husk: Phenols? [J]. Guihaia, 38(4): 463-468.? [魏歡, 楊建文, 顏小捷, 等, 2018. 核桃青皮的化學成分研究——酚類化合物? [J]. 廣西植物, 38(4): 463-468.]
XU J, ZHANG TJ, GONG SX, et al., 2010. Chemical constituents from the effective hemostatic of Cirsium setosum? [J].Chin Trad Herb Drugs, 41(4): 542-544.? [許浚, 張鐵軍, 龔蘇曉, 等, 2010. 小薊止血活性部位的化學成分研究? [J]. 中草藥, 41(4): 542-544.]
ZHU TF, LI P, SUN QW, et al., 2019. Chemical constituents from leaves of Sabia parviflora? [J]. Guihaia, 39(4): 511-515.? [朱仝飛, 李萍, 孫慶文, 等, 2019. 小花清風藤葉的化學成分研究? [J]. 廣西植物, 39(4): 511-515.]
(責任編輯 何永艷)
m/z: 171.0245 [M+H]+。1H NMR (500 MHz, CD3OD) δ: 7.03 (2H, s, H-2, 6)。上述所有數據與參考文獻(魏歡等, 2018)比對相同,經HPLC分析,與沒食子酸標準品保留時間一致,故鑒定化合物1為沒食子酸。
化合物2 C9H8O4,白色粉末。1H NMR (500 MHz, CD3OD) δ: 7.64 (1H, d, J=15.9 Hz, H-7), 7.08 (1H, d, J=1.8 Hz, H-2), 6.99 (1H, dd, J=8.2, 1.8 Hz, H-6), 6.75 (1H, d, J=8.2 Hz, H-5), 6.37 (1H, d, J=15.9 Hz, H-8); 13C NMR (125 MHz, CD3OD) δ: 115.2 (C-2), 115.5 (C-5), 116.5 (C-8), 123.3 (C-6), 127.9 (C-1), 146.5 (C-7), 147.4 (C-3), 149.6 (C-4), 168.7 (C-9)。上述所有數據與參考文獻(朱仝飛等, 2019)比對相同,故鑒定化合物2為咖啡酸。
化合物3 C14H16O6,淡黃色粉末。1H NMR (500 MHz, CD3OD) δ: 7.64 (1H, d, J=15.9 Hz, H-7′), 7.05 (1H, d, J=1.9 Hz, H-2′), 6.98 (1H, dd, J=8.2, 1.9 Hz, H-6′), 6.76 (1H, d, J=8.2 Hz, H-5′), 6.38 (1H, d, J=15.9 Hz, H-8′), 4.81 (1H, dd, J=9.3, 2.9 Hz, H-1), 4.31-4.26 (2H, m, H-2, 3), 2.22-1.99 (4H, m, H-4a, 4b, 5a, 5b); 13C NMR (125 MHz, CD3OD) δ: 38.5 (C-4), 42.7 (C-5), 65.6 (C-3), 69.3 (C-1), 79.5 (C-2), 115.2 (C-2′), 115.6 (C-8′), 116.1 (C-5′), 123.0 (C-6′), 127.9 (C-1′), 146.8 (C-7′), 147.1 (C-4′), 149.5 (C-3′), 169.0 (C-9′)。上述所有數據與參考文獻(許浚等, 2010)比對相同,故鑒定化合物3為1-(3′,4′-二羥基肉桂酰)-環戊-2,3-二酚。
化合物4 C16H18O9,白色粉末。1H NMR (500 MHz, CD3OD) δ: 7.53 (1H, d, J=15.9 Hz, H-7), 7.04 (1H, d, J=2.0 Hz, H-2′), 6.97 (1H, dd, J=8.2, 2.0 Hz, H-6′), 6.75 (1H, d, J=8.2 Hz, H-5′), 6.23 (1H, d, J=15.9 Hz, H-8), 5.27 (1H, m, H-5), 4.11 (1H, m, H-3), 3.75 (1H, dd, J=7.6, 3.1 Hz, H-4), 2.22-2.17 (2H, m, H-2a, 6a), 2.13 (1H, dd, J=13.3, 8.3 Hz, H-2b), 2.02 (1H, dd, J=13.3, 6.6 Hz, H-6b); 13C NMR (125 MHz, CD3OD) δ: 38.0 (2C, C-2, 6), 70.4 (C-3), 72.0 (C-5), 72.6 (C-4), 75.9 (C-1), 115.1 (C-2′), 115.3 (C-8′), 116.5 (C-5′), 123.1 (C-6′), 127.2 (C-1′), 146.7 (C-3′), 147.3 (C-7′), 149.7 (C-4′), 168.6 (C-9′), 175.3 (C-7)。上述所有數據與參考文獻(李樹和劉玉衡,2015)比對相同,故鑒定化合物4為綠原酸。
化合物5 C17H20O9,灰白色粉末。HR-ESI-MS m/z: 369.0948 [M+H]+。1H NMR (500 MHz, CD3OD) δ: 7.52 (1H, d, J=15.9 Hz, H-7), 7.05 (1H, d, J=1.9 Hz, H-2), 6.97 (1H, dd, J=8.2, 1.9 Hz, H-6), 6.75 (1H, d, J=8.2 Hz, H-5), 6.22 (1H, d, J=15.9 Hz, H-8), 5.33 (1H, m, H-3), 4.14 (1H, dd, J=6.6, 3.3 Hz, H-5), 3.74 (1H, dd, J=7.5, 3.1 Hz, H-4), 3.69 (3H, s, -OCH3), 2.24-2.01 (4H, m, H-2a, 2b, 6a, 6b); 13C NMR (125 MHz, CD3OD) δ: 37.8 (C-2), 38.0 (C-6), 53.0 (-OCH3), 70.4 (C-5), 72.0 (C-3), 72.6 (C-4), 75.9 (C-1), 115.0 (C-8′), 115.4 (C-2′), 116.3 (C-5′), 123.0 (C-6′), 127.2 (C-1′), 146.9 (C-3′), 147.2 (C-7′), 149.3 (C-4′), 168.6 (C-9′), 175.4 (C-7)。上述所有數據與參考文獻(蒲首丞等,2010)比對相同,故鑒定化合物5為綠原酸甲酯。
化合物6 C21H18O12,淡黃色粉末。HR-ESI-MS m/z: 463.1262 [M+H]+。1H NMR (500 MHz, acetone-d6) δ: 8.16 (2H, d, J=8.9 Hz, H-2′, 6′), 6.93 (2H, d, J=8.9 Hz, H-3′, 5′), 6.56 (1H, d, J=1.9 Hz, H-8), 6.29 (1H, d, J=1.9 Hz, H-6), 5.46 (1H, d, J=7.6 Hz, H-1″), 3.87 (1H, d, J=9.7 Hz, H-5″), 3.67-3.50 (3H, m, H-2″, H-3″, 4″); 13C NMR (125 MHz, acetone-d6) δ: 72.4 (C-4″), 75.2 (C-2″), 76.4 (C-3″), 77.4 (C-5″), 94.3 (C-8), 99.9 (C-6), 104.1 (C-1″), 105.4 (C-10), 116.0 (2C, C-3′, 5′), 122.3 (C-1′), 132.2 (2C, C-2′, 6′), 135.3 (C-3), 158.0 (C-2), 158.4 (C-9), 161.0 (C-4′), 162.7 (C-5), 165.2 (C-7), 169.9 (C-6″), 178.9 (C-4)。上述所有數據與參考文獻(Hari et al., 2017)比對相同,故鑒定化合物6為kaempferol 3-O-β-D-glucuronopyranoside。
化合物7 C32H38O19,黃色粉末。HR-ESI-MS m/z: 727.1855 [M+H]+。1H NMR (500 MHz, CD3OD) δ: 8.06 (2H, d, J=8.8 Hz, H-2′, 6′), 6.92 (2H, d, J=8.8 Hz, H-3′, 5′), 6.43 (1H, d, J=2.1 Hz, H-8), 6.21 (1H, d, J=2.1 Hz, H-6), 5.41 (1H, d, J=7.5 Hz, H-1″), 4.78 (1H, d, J=7.0 Hz, H-1), 4.50 (1H, s, H-1″″), 1.09 (3H, d, J=6.2 Hz, H-6″″); 13C NMR (125 MHz, CD3OD) δ: 17.8 (C-6″″), 66.6 (C-5), 68.1 (C-6″), 69.7 (C-5″″), 71.0 (C-4″), 71.4 (C-4), 72.1 (C-3″″), 72.3 (C-2″″), 73.9 (C-4″″), 74.7 (C-2), 76.9 C-3), 77.1 (C-5″), 78.2 (C-3″), 82.0 (C-2″), 94.2 (C-8), 99.5 (C-6), 100.7 (C-1″), 102.4 (C-1″″), 105.2 (C-1), 105.7 (C-10), 116.2 (2C, C-3′, 5′), 122.9 (C-1′), 132.4 (2C, C-2′, 6′), 134.8 (C-3), 158.5 (C-2), 158.7 (C-9), 161.2 (C-4′), 163.4 (C-5), 165.7 (C-7), 179.5 (C-4)。上述所有數據與參考文獻(Li et al., 2008)比對相同,故鑒定化合物7為kaempferol 3-O-{β-D-xylopyranosyl-(1→2)- [α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside}。
化合物8 C21H18O13,黃色粉末。HR-ESI-MS m/z: 479.0548 [M+H]+。1H NMR (500 MHz, CD3OD) δ: 7.66 (1H, d, J=2.2 H-2′), 7.64 (1H, dd, J=8.6, 2.2 Hz, H-6′), 6.87 (1H, d, J=8.6 Hz, H-5′), 6.38 (1H, d, J=2.0 Hz, H-8), 6.19 (1H, d, J=2.0 Hz, H-6), 5.34 (1H, d, J=7.7 Hz, H-1″), 3.76 (1H, d, J=9.7 Hz, H-5″), 3.61-3.46 (3H, m, H-2″, 3″, 4″); 13C NMR (125 MHz, CD3OD) δ: 72.8 (C-4″), 75.4 (C-2″), 77.0 (C-3″), 77.6 (C-5″), 94.8 (C-8), 100.0 (C-6), 104.2 (C-1″), 105.6 (C-10), 116.0 (C-2′), 117.3 (C-5′), 122.8 (C-6′), 123.5 (C-1′), 135.4 (C-3), 145.9 (C-3′), 150.2 (C-4′), 158.1 (C-2), 159.1 (C-9), 162.6 (C-5), 165.9 (C-7), 172.3 (C-6″), 179.2 (C-4)。上述所有數據與參考文獻(Du et al., 2010)比對相同,故鑒定化合物8為quercetin 3-O-β-D-glucuronopyranoside。
化合物9 C22H20O13,黃色無晶形粉末。HR-ESI-MS m/z: 493.0742 [M+H]+。1H NMR (500 MHz, CD3OD) δ: 7.60 (1H, d, J=2.2 H-2′), 7.56 (1H, dd, J=8.5, 2.2 H-6′), 6.83 (1H, d, J=8.5 Hz, H-5′), 6.40 (1H, br s, H-8), 6.20 (1H, br s, H-6), 5.25 (1H, d, J=7.8 Hz, H-1″), 3.80 (1H, d, J=9.7 Hz, H-5″), 3.68 (3H, s, 6″-OCH3), 3.61-3.47 (3H, m, H-2″, 3″, 4″); 13C NMR (125 MHz, CD3OD) δ: 52.9 (6″-OCH3), 72.7 (C-4″), 75.3 (C-2″), 77.0 (C-5″), 77.3 (C-3″), 94.5 (C-8), 99.9 (C-6), 104.6 (C-1″), 105.5 (C-10), 115.9 (C-5′), 117.3 (C-2′), 122.8 (C-1′), 123.5 (C-6′), 135.4 (C-3), 145.9 (C-3′), 149.8 (C-4′), 158.1 (C-9), 159.3 (C-2), 162.9 (C-5), 166.4 (C-7), 170.9 (C-6″), 179.2 (C-4)。上述所有數據與參考文獻(He et al., 2017)比對相同,故鑒定化合物9為quercetin 3-O-β-glucuronide-6″-methyl ester。
化合物10 C27H30O16,淡黃色粉末。HR-ESI-MS m/z: 611.1935 [M+H]+。1H NMR (500 MHz, acetone-d6) δ: 7.72 (1H, d, J=2.2 Hz, H-2′), 7.67 (1H, dd, J=8.5, 2.2 Hz, H-6′), 6.93 (1H, d, J=8.5 Hz, H-5′), 6.49 (1H, d, J=2.1 Hz, H-8), 6.31 (1H, d, J=2.1 Hz, H-6), 5.12 (1H, d, J=7.3 Hz, H-1″), 4.53 (1H, d, J=1.8 Hz, H-1), 1.06 (3H, d, J=6.5 Hz, H-6), 3.74-3.30 (10H, m, H-2″, 3″, 4″, 5″, 6a″, 6b″, 2, 3, 4, 5); 13C NMR (125 MHz, acetone-d6) δ: 17.7 (C-6), 67.5 (C-6″), 69.0 (C-5), 70.3 (C-4″), 71.2 (C-3), 71.6 (C-2), 73.0 (C-4), 74.9 (C-3″), 76.3 (C-2″), 77.4 (C-5″), 94.5 (C-8), 99.9 (C-6), 101.7 (C-10), 104.4 (C-1), 104.8 (C-1″), 115.8 (C-5′), 117.4 (C-2′), 122.3 (C-1′), 123.1 (C-6′), 135.0 (C-3), 145.2 (C-3′), 149.2 (C-4′), 157.7 (C-2), 158.6 (C-5), 161.9 (C-9), 165.3 (C-7), 178.6 (C-4)。上述所有數據與參考文獻(陳秋虹等,2017)比對相同,故鑒定化合物10為蘆丁。
化合物11 C27H30O16,淡黃色粉末。HR-ESI-MS m/z: 611.1472 [M+H]+。1H NMR (500 MHz, CD3OD) δ: 7.67 (1H, d, J=1.9 Hz, H-2′), 7.61 (1H, dd, J=8.5, 1.9 Hz, H-6′), 6.85 (1H, d, J=8.5 Hz, H-5′), 6.40 (1H, d, J=1.9 Hz, H-8), 6.21 (1H, d, J=1.9 Hz, H-6), 5.11 (1H, d, J=7.7 Hz, H-1″), 4.52 (1H, br s, H-1), 3.80 (1H, d, J=10.9 Hz, H-6a″), 3.63 (1H, m, H-3), 3.52-3.26 (8H, m, H-2″, 3″, 4″, 5″, 6b″, 2, 4, 5); 13C NMR (125 MHz, CD3OD) δ: 17.9 (C-6), 68.6 (C-6″), 69.7 (C-5), 71.4 (C-4″), 72.1 (C-3), 72.3 (C-2), 73.9 (C-4), 75.7 (C-2″), 77.2 (C-5″), 78.2 (C-3″), 94.9 (C-8), 100.0 (C-6), 102.4 (C-1), 104.6 (C-1″), 105.8 (C-10), 116.1 (C-5′), 117.9 (C-2′), 123.1 (C-1′), 123.6 (C-6′), 135.6 (C-3), 145.9 (C-4′), 149.8 (C-3′), 158.7 (C-9), 159.1 (C-2), 163.0 (C-7), 166.4 (C-5), 179.1 (C-4)。上述所有數據與參考文獻(Bina et al., 2012)比對相同,故鑒定化合物11為quercetin 5-O- [α-L-rhamnopyranosyl- (1→6)]-β-D-glucopyranoside。
3 討論
本研究從瓦山錐干燥的樹葉醇提取物中分離鑒定了11個植物多酚類成分,包括1個沒食子酸類化合物、2個奎寧酸類化合物、2個咖啡酸類化合物、6個黃酮類化合物,所有化合物均為首次從瓦山錐植物中分離得到。本課題組系統地進行了廣西常見的殼斗科植物南嶺栲、紅栲、甜櫧、飯甑青岡、鉤錐、瓦山錐等植物的化學成分研究,從南嶺栲、紅栲、甜櫧、鉤錐中得到錐屬植物中特有的特征性三萜鞣花單寧成分,為在經典分類中系統位置有爭議的殼斗科植物錐屬的系統位置提供了直接的化學證據。瓦山錐中暫未分離得到特征性三萜鞣花單寧成分,但含有大量原花青素類多聚體化合物。此類多聚體多為結構相近、極性相似的化合物,較難分離,本實驗通過Sephadex LH-20、Chromatorex C18等柱色譜反復分離提取得到三個此類化合物,目前化合物的結構正在鑒定當中。本實驗為植物多酚類成分的分離純化積累經驗,為瓦山錐植物的合理開發與可持續利用提供了科學依據。
參考文獻:
BINA SS, NASIMA K, SABIRA B, et al., 2012. Flavonoid and cardenolide glycosides and a pentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity? [J]. Phytochemistry, 77: 238-244.
CHEN QH, HUANG Y, ZHOU JJ, et al., 2017. Chemical constituents from leaves of Camellia nitidissima var. longistyla (II)? [J]. Chin Trad Herb Drugs, 48(23): 4845-4850.? [陳秋虹, 黃艷, 周潔潔, 等, 2017. 長柱金花茶葉的化學成分研究(II) [J]. 中草藥, 48(23):? 4845-4850.]
Chinese Botanical Society Editorial Board of Chinese Academy of Sciences, 1998. Flora Reipublicae Popularis Sinicae? [M]. Beijing: Science Press, 22:13, 69.? [中國科學院中國植物志編輯委員會, 1998. 中國植物志 [M]. 北京: 科學出版社, 22: 13, 69.]
DU ZZ, YANG XW, HAN H, et al., 2010. A new flavone C-glycoside from Clematis rehderiana? [J]. Molecules, 5(1): 15: 672-679.
HARI PD, SENA M, SHOJI Y, 2017. Amentoflavone and kaempferol glycosides from the aerial parts of Cissampelos pareira? [J]. Biotechnology, 5(1): 1-4.
HE ZN, LIAN WW, LIU JW, et al., 2017. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli? [J]. Phytochem Lett, 19: 160-167.
Jiangsu New Medical School, 1977. Traditional Chinese Medicine Dictionary: The first and the second? [M]. Shanghai: Shanghai Peoples Publishing House.? [江蘇新醫學院, 1977, 中藥大辭典(上、下兩冊)? [M]. 上海:上海人民出版社.]
LI CD, BEI LW, JIAN MC, 2008. Flavonoid triglycosides from the seeds of Camellia oleifera Abel? [J]. Chin Chem Lett, 19: 1315-1318.
LI S, LIU YH, 2015. Chemical constituents with antioxidative activity from the flower buds of Lonicera serreana? [J]. Guihaia, 35(4): 586-589.? [李樹, 劉玉衡, 2015. 毛藥忍冬花蕾抗氧化活性部位化學成分研究 [J]. 廣西植物, 35(4): 586-589.]
PU SC, GUO YQ, GAO WY, et al., 2010. Chemical constituents from Hydrocotyle sibthorpioides? [J]. Chin Trad Herb Drugs, 41(9): 1440-1442.? [蒲首丞, 郭遠強, 高文遠, 2010. 天胡荽化學成分的研究? [J]. 中草藥, 41(9): 1440-1442.]
WANG YF, HUANG YL, LIU JL, et al., 2016. Content and antioxidant capacity of polyhenols from the Fagaceae plants? [J]. Guangxi Sci, 23(2):180-183.? [王亞鳳, 黃永林, 劉金磊, 等, 2016. 殼斗科植物種子的多酚類含量及抗氧化能力? [J]. 廣西科學, 23(2):180-183.]
WEI H, YANG JW, YAN XJ, et al., 2018. Chemical constituents from walnut green husk: Phenols? [J]. Guihaia, 38(4): 463-468.? [魏歡, 楊建文, 顏小捷, 等, 2018. 核桃青皮的化學成分研究——酚類化合物? [J]. 廣西植物, 38(4): 463-468.]
XU J, ZHANG TJ, GONG SX, et al., 2010. Chemical constituents from the effective hemostatic of Cirsium setosum? [J].Chin Trad Herb Drugs, 41(4): 542-544.? [許浚, 張鐵軍, 龔蘇曉, 等, 2010. 小薊止血活性部位的化學成分研究? [J]. 中草藥, 41(4): 542-544.]
ZHU TF, LI P, SUN QW, et al., 2019. Chemical constituents from leaves of Sabia parviflora? [J]. Guihaia, 39(4): 511-515.? [朱仝飛, 李萍, 孫慶文, 等, 2019. 小花清風藤葉的化學成分研究? [J]. 廣西植物, 39(4): 511-515.]
(責任編輯 何永艷)