薛鑫 周心智 決登偉



摘 ?要:WRKY轉(zhuǎn)錄因子在植物的生長發(fā)育和逆境脅迫響應(yīng)中起著重要作用。前期研究發(fā)現(xiàn),部分WRKY基因(比如DlWRKY52)參與了龍眼的成花誘導(dǎo)和逆境脅迫響應(yīng)過程。為進(jìn)一步研究龍眼WRKY基因的功能,以‘四季蜜龍眼葉片cDNA為模板克隆得到DlWRKY52基因,并對其序列特征、組織表達(dá)模式、花果發(fā)育過程表達(dá)模式及亞細(xì)胞定位進(jìn)行研究。結(jié)果表明:DlWRKY52基因的開放閱讀框(open reading frame, ORF)全長為918 bp,編碼306個(gè)氨基酸,具有典型的WRKY結(jié)構(gòu)域和鋅指結(jié)構(gòu),屬于Ⅱc型WRKY蛋白。qRT-PCR結(jié)果表明,DlWRKY52基因在葉片、莖和果實(shí)器官中高表達(dá);在花后80 d的果肉中顯著上調(diào)表達(dá);特異在‘四季蜜成花誘導(dǎo)中下調(diào)表達(dá)。擬南芥原生質(zhì)體瞬時(shí)表達(dá)結(jié)果顯示,熒光信號主要集中在細(xì)胞核。上述結(jié)果表明,作為典型的轉(zhuǎn)錄因子,DlWRKY52編碼的蛋白定位于細(xì)胞核。DlWRKY52可能參與了龍眼成花誘導(dǎo)及果實(shí)早期發(fā)育調(diào)控。
關(guān)鍵詞:龍眼;WRKY;轉(zhuǎn)錄因子;表達(dá)分析;蛋白亞細(xì)胞定位
中圖分類號:S188 ? ? ?文獻(xiàn)標(biāo)識碼:A
Abstract: WRKY transcription factors plays an important role in plant growth, development and stress response. Based on a previous study, we found several WRKY genes, such as DlWRKY52, were participated in the process of floral induction and stress response. To further reveal the function of longan WRKY genes, DlWRKY52 was cloned using the leave cDNA of ‘Sijimi longan as the template. Meanwhile, the sequence characteristics, tissue expression patterns, flower and fruit development process expression patterns and subcellular localization were also studied. Bioinformatics analysis indicated that the complete open reading frame (ORF) box of DlWRKY52 was 918 bp, encoding 305 amino acid residues. The amino acid sequence alignment analysis showed that DlWRKY52 contained a typical WRKY domain and a zinc finger structure, belonging to Group Ⅱc. The result of qRT-PCR showed that DlWRKY52 was highly expressed in leave, stem and fruit organs, significantly up-regualted in the pulp 80 days post-anthesis. The transient expression of Arabidopsis protoplasts demonstrated that DlWRKY52 protein was localized to the nucleus, indicating that DlWRKY52, as a typical transcription factor, is localized to the nucleus, and might participate in the regulating of longan floral induction and early fruit development.
Keywords: Dimocarpus longan; WRKY; transcription factor; expression analysis; protein subcellular localization
DOI: 10.3969/j.issn.1000-2561.2020.04.014
龍眼(Dimocarpus longan Lour.)原產(chǎn)于中國華南地區(qū),是無患子科(Sapindaceae)一種重要的熱帶經(jīng)濟(jì)果樹。世界上許多熱帶和亞熱帶國家均有龍眼的種植和生產(chǎn),比如澳大利亞及越南、泰國等東南亞國家[1]。中國龍眼的栽培面積和產(chǎn)量一直穩(wěn)居世界首位,并且在整個(gè)世界龍眼產(chǎn)業(yè)經(jīng)濟(jì)中占有極重要的地位。
龍眼在中國已有2000年以上的栽培歷史,我國擁有豐富的龍眼種質(zhì)資源,同時(shí)也積累了先進(jìn)的栽培、管理技術(shù)[2]。然而,實(shí)際生產(chǎn)中仍然有很多問題限制著龍眼產(chǎn)業(yè)的發(fā)展。其中,成花難所導(dǎo)致的產(chǎn)量不穩(wěn)定是最主要的問題[3]。龍眼成花誘導(dǎo)需要合適的外界環(huán)境條件,比如一段時(shí)間的低溫(春化作用),合適的土壤鹽度及干燥條件等。若成花誘導(dǎo)關(guān)鍵時(shí)期出現(xiàn)高溫,即便花原基已經(jīng)形成,龍眼花芽也會(huì)轉(zhuǎn)變成為葉芽,即“成花逆轉(zhuǎn)”,從而造成減產(chǎn),出現(xiàn)龍眼生產(chǎn)的“大小年”現(xiàn)象,嚴(yán)重打擊果農(nóng)的生產(chǎn)積極性和龍眼產(chǎn)業(yè)的健康發(fā)展。在實(shí)際生產(chǎn)中,人們常利用一些化學(xué)試劑(比如KClO3)來實(shí)現(xiàn)龍眼花期調(diào)控。然而,這些化學(xué)試劑的效果因施用地區(qū)和品種的不同而差異很大[4-5]。因此,解析龍眼成花調(diào)控分子機(jī)制才是解決該問題的根本途徑。前人對不斷成花的‘四季蜜和正常開花的‘石硤龍眼進(jìn)行了對比轉(zhuǎn)錄組測序,初步解析了‘四季蜜龍眼特異成花誘導(dǎo)機(jī)制,同時(shí)發(fā)現(xiàn)一些轉(zhuǎn)錄因子特異參與該過程,比如WRKY等[6]。
1.4 ?亞細(xì)胞定位分析
根據(jù)克隆所得的DlWRKY52基因序列設(shè)計(jì)引物(去除終止子)(表1),擴(kuò)增帶有酶切位點(diǎn)(E?co-RⅠ)的DlWRKY52的ORF全長,PCR反應(yīng)程序如上。PCR產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測、純化后連接pMD18-T載體上,轉(zhuǎn)化DH5α。挑取單菌落,經(jīng)PCR檢測后提質(zhì)粒測序。然后分別對pBWA(V)HS-osgfp DlWRKY52質(zhì)粒用EcoRⅠ進(jìn)行酶切,回收后進(jìn)行酶連。將酶連后的質(zhì)粒轉(zhuǎn)入大腸桿菌DH5α,陽性檢測后挑選正確的菌株測序,然后提取得到pBWA(V)HS-DlW?RK?Y52-osgfp質(zhì)粒。接著通過PEG介導(dǎo)法轉(zhuǎn)入擬南芥的原生質(zhì)體中[20]。28 ℃暗培養(yǎng)24~48 h用激光共聚焦顯微鏡觀察。同時(shí)以pBWA(V)HS-osgfp空載作為對照。
2 ?結(jié)果與分析
2.1 ?DlWRKY52基因的克隆及生物信息學(xué)分析
以龍眼cDNA為模板,用W52-S/W52-A(表1)引物擴(kuò)增出1000 bp左右的片段(圖1)。測序結(jié)果顯示。該片段與龍眼(‘紅核子)基因組數(shù)據(jù)庫中的目的序列(Dlo_001658.1)完全一致,大小為918 bp,編碼305個(gè)氨基酸,其分子量為33.96 kDa,理論等電點(diǎn)為6.26。根據(jù)龍眼WRKY家族基因組的定位信息,命名為DlWRKY?52。氨基酸序列分析表明,DlWRKY52含有1個(gè)WRKY結(jié)構(gòu)域及C2H2型鋅指結(jié)構(gòu)(C–X4–C–X23– H–X–H),屬于WRKY家族中的 Group IIc(圖2)。
利用BLASTp對DlWRKY52的氨基酸序列進(jìn)行同源性檢索,然后利用MEGA 6.0軟件構(gòu)建系統(tǒng)進(jìn)化樹(圖3)。結(jié)果表明,DlWRKY52與雙子葉植物的WRKY聚類到一起,其中與柑橘(Citrus sinensis)的CsWRKY23(XP_00649235?9.1)親緣關(guān)系最近,而與單子葉植物的WRKY親緣關(guān)系較遠(yuǎn),比如水稻(Oryza sativa)的OsWR?KY23 (DAA-05088.1)。
2.2 ?DlWRKY52基因組織表達(dá)特性分析
qRT-PCR結(jié)果表明DlWRKY52基因在被檢測的9種龍眼組織中都有表達(dá),其中在葉片中表達(dá)量最高,在幼果、莖和果皮中的表達(dá)次之(圖4)。
2.3 ?DlWRKY52基因在花、果發(fā)育過程中的表達(dá)模式
利用qRT-PCR技術(shù),本研究分析了DlWR?K?Y52在‘四季蜜和‘石硤龍眼3個(gè)成花階段的表達(dá)。結(jié)果表明,DlWRKY52在‘四季蜜龍眼成花誘導(dǎo)早期呈下調(diào)表達(dá),T2時(shí)期僅為T1時(shí)期的1/5。而在‘石硤龍眼成花誘導(dǎo)過程中DlWR?KY52的表達(dá)水平未出現(xiàn)顯著性差異表達(dá)(圖5)。
同時(shí),本研究也分析了DlWRKY52在‘四季蜜龍眼中與果實(shí)發(fā)育的關(guān)系。花后60~80 d的2個(gè)取樣時(shí)間段果肉的重量呈顯著上升趨勢,而80~100 d果肉重量未出現(xiàn)顯著性變化(圖6A)。與果肉重量變化相似,DlWRKY52的表達(dá)量在花后70 d和80 d分別上調(diào)了1.77倍和4.35倍。花后90 d和100 d DlWRKY52的表達(dá)水平?jīng)]有再出現(xiàn)顯著變化(圖6B)。該結(jié)果表明,DlWRKY52可能在早期階段正調(diào)控果肉器官發(fā)育。
2.4 ?DlWRKY52亞細(xì)胞定位分析
為檢測DlWRKY52蛋白在細(xì)胞中的定位,本研究構(gòu)建了含有增強(qiáng)型綠色熒光蛋白(GFP)的融合蛋白表達(dá)載體(35S:DlWRKY52-GFP),通過PEG介導(dǎo)法轉(zhuǎn)入擬南芥葉肉原生質(zhì)體細(xì)胞里,并用激光共聚焦顯微鏡進(jìn)行觀察。如圖7所示,在480 nm波長的激化下,35S:DlWRKY52- GFP只在細(xì)胞核里有熒光信號,細(xì)胞質(zhì)和細(xì)胞膜中均無GFP信號,而35S:GFP對照組則在整個(gè)細(xì)胞中都能觀察到GFP信號,沒有明確的定位。該結(jié)果表明,DlWRKY52蛋白可能定位于細(xì)胞核上。
3 ?討論
成花是植物生命進(jìn)程中的一個(gè)重要事件,直接決定著作物的種子或果實(shí)產(chǎn)量[21]。研究成花誘導(dǎo)的遺傳機(jī)制、挖掘成花相關(guān)基因,對于果樹的花期調(diào)控和增產(chǎn)具有重要意義。
目前,植物的成花分子遺傳機(jī)制研究多集中在模式植物上,而在果樹中還未取得突破性進(jìn)展。擬南芥中至少存在5條主要的成花通路,包括光信號途徑、春化途徑、自花途徑、赤霉素途徑及年齡途徑[22]。通過FT(FLOWERING LOCUS T)、FLC(FLOWERING LOCUS C)和CO (CO?NS?TANS)等成花相關(guān)基因以及MADS-domain、NACs、MYBs等轉(zhuǎn)錄因子的介導(dǎo),這些通路形成一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò),最終實(shí)現(xiàn)對成花轉(zhuǎn)變的激活或抑制。作為成花植物的一類重要轉(zhuǎn)錄因子,WRKY可以通過保守結(jié)構(gòu)域(WRKYGQK)結(jié)合下游基因啟動(dòng)子中的W-box核心序列(T)TGACC(A/T)特異性結(jié)合來激活或者抑制植物的成花[6]。比如,AtWRKY71可通過直接與FT、LFY和AP1啟動(dòng)子區(qū)域的W-boxes結(jié)合來影響植物的成花[9]。AtWRKY12和AtWRKY13則通過調(diào)控FUL表達(dá)在短日照下調(diào)控?cái)M南芥開花[12]。AtWRKY75也是通過直接激活FT來促進(jìn)擬南芥開花[23]。有趣的是,這些模式植物的基因均屬于WRKY轉(zhuǎn)錄因子的Group IIc。本研究的DlWRKY52含有典型的WRKY結(jié)構(gòu)域及C2H2型鋅指結(jié)構(gòu),與AtWRKY71等基因一樣也屬于Group IIc。表達(dá)分析表明,DlWRKY52只在‘四季蜜龍眼成花誘導(dǎo)早期呈下調(diào)表達(dá),而在‘石硤龍眼成花誘導(dǎo)過程中未出現(xiàn)顯著性表達(dá)差異,說明DlWRKY52特異參與了‘四季蜜龍眼成花誘導(dǎo)早期調(diào)控過程,并起到負(fù)調(diào)控的作用。與其他WRKY轉(zhuǎn)錄因子一樣[24-27],DlWRKY52蛋白定位于細(xì)胞核上,說明DlWR?KY52蛋白對龍眼成花誘導(dǎo)調(diào)控發(fā)生在細(xì)胞上。但DlWRKY52究竟是通過與哪些成花基因互作及哪些成花通路來調(diào)控‘四季蜜的成花誘導(dǎo)?還需要進(jìn)一步研究。
果實(shí)是果樹最重要的器官,高產(chǎn)、穩(wěn)產(chǎn)是果樹育種家的一個(gè)最要選育目標(biāo)。篩選、鑒定與果實(shí)發(fā)育相關(guān)的基因具有重要意義。本研究中,D?l??W?R?KY52在幼果中呈高表達(dá)水平,同時(shí)該基因在發(fā)育早期階段的龍眼果肉中呈上調(diào)表達(dá)模式,與果實(shí)發(fā)育模式呈正相關(guān)。該結(jié)果表明,DlWR?KY52基因可能參與了龍眼果實(shí)的早期發(fā)育,并起正調(diào)控作用。與本研究的結(jié)果類似,野草莓(Fragaria vesca)的59個(gè)FvWRKY基因中,8個(gè)在果實(shí)發(fā)育和成熟過程中上調(diào)表達(dá)[28]。過表達(dá)OsWRKY47和GsWRKY20都會(huì)增加轉(zhuǎn)基因植株的產(chǎn)量和干旱脅迫的耐受性[18, 29]。
參考文獻(xiàn)
[1] Matsumoto T K. Genes uniquely expressed in vegetative and potassium chlorate induced floral buds of Dimocarpus longan[J]. Plant Science, 2006, 170(3): 500-510.
[2] Wang B, Tan H W, Fang W, et al. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm[J]. Horticulture Research, 2015, 2: 14065.
[3] You X, Wang L, Liang W, et al. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses[J]. Journal of Proteomics, 2012, 75(4): 1099-1118.
[4] Jia T, Wei D, Meng S, et al. Identification of regulatory genes implicated in continuous flowering of longan (Dimocarpus longan L.)[J]. PLoS One, 2014, 9(12): e114568.
[5] Zhang H N, Shi S Y, Li W C, et al. Transcriptome analysis of ‘Sijihua longan (Dimocarpus longan L.) based on next-generation sequencing technology[J]. The Journal of Horticultural Science and Biotechnology, 2016, 91(2): 180-188.
[6] Jue D, Sang X, Liu L, et al. Identification of WRKY Gene Family from Dimocarpus longan and its expression analysis during flower induction and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(8): 2169.
[7] Chen F, Hu Y, Vannozzi A, et al. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2017, 36(5-6): 311-335.
[8] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206.
[9] Yu Y, Liu Z, Wang L, et al. WRKY 71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. The Plant Journal, 2016, 85(1): 96-106.
[10] Cai Y, Chen X, Xie K, et al. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice[J]. PLoS One, 2014, 9(7): e102529.
[11] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Science, 2013, 212: 1-9.
[12] Li W, Wang H, Yu D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions[J]. Molecular Plant, 2016, 9(11): 1492-1503.
[13] Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252.
[14] Han C, Lai Z, Shi J, et al. Roles of Arabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology, 2010, 10(1): 281.
[15] Kilian J, Whitehead D J, Wanke D, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses[J]. The Plant Journal, 2007, 50(2): 347-363.
[16] Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full‐length cDNA microarray[J]. The Plant Journal, 2002, 31(3): 279-292.
[17] Qiu Y, Jing S, Fu J, et al. Cloning and analysis of expression profile of 13 WRKY genes in rice[J]. Chinese Science Bulletin, 2004, 49(20): 2159-2168.
[18] Raineri J, Wang S, Peleg Z, et al. The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4-5): 401-413.
[19] Jue D, Sang X, Liu L, et al. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition[J]. BMC Genomics, 2019, 20(1): 126.
[20] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565.
[21] Shabala S, Bose J, Hedrich R. Salt bladders: do they matter?[J]. Trends in Plant Science, 2014, 19(11): 687-691.
[22] Turnbull C. Long-distance regulation of flowering time[J]. Journal of Experimental Botany, 2011, 62(13): 4399-4413.
[23] Zhang L, Chen L, Yu D. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering[J]. Plant Physiology, 2018, 176(1): 790-803.
[24] 張遠(yuǎn)嬿. 蘋果MdWRKY33基因的克隆與功能分析[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2018.
[25] 張 ?旭, 凌 ?輝, 劉 ?峰, 等. 一個(gè)甘蔗Ⅱd類WRKY轉(zhuǎn)錄因子基因的克隆和表達(dá)分析[J]. 中國農(nóng)業(yè)科學(xué), 2018, 51(23): 4409-4423.
[26] 陳彩慧, 伍艷芳, 肖 ?蓉, 等. 樟樹WRKY轉(zhuǎn)錄因子的克隆與表達(dá)分析[J]. 分子植物育種, 2018, 16(15): 4872-4879.
[27] Zhu D, Hou L, Xiao P, et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress[J]. Plant Science, 2019, 280: 132-142.
[28] Zhou H, Li Y, Zhang Q, et al. Genome-wide analysis of the expression of WRKY family genes in different developmental stages of wild strawberry (Fragaria vesca) fruit[J]. PloS One, 2016, 11(5): e0154312.
[29] Ning W, Zhai H, Yu J, et al. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean[J]. Molecular Breeding, 2017, 37(2): 19.