999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE COMMUTATOR TYPE AND THE LEVI FORM TYPE IN C3

2020-08-13 10:31:44YINWankeYUANPingsanCHENYingxiang
數學雜志 2020年4期

YIN Wan-ke,YUAN Ping-san,CHEN Ying-xiang

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

Abstract:For any fixed(1,0)vector field of a pseudoconvex hypersurface in C3,we prove that its commutator type and Levi form type are equal to each other.This answers affirmatively a problem of D’Angelo in complex dimension three.

Keywords:finite type;pseudoconvex hypersurface;Bloom conjecture;sub-elliptic estimates

1 Introduction

The finite type conditions gave their rise from the investigation of the subellipticity of the-Neumann operator.For any boundary point of a smooth pseudoconvex domain in C2,Kohn[1]introduced three kinds of integer invariants,which are respectively the regular contact type,the commutator type and the Levi form type.Kohn proved that these invariants are equal to each other.When they are finite at a boundary point,the domain possesses local sub-elliptic estimates near this point.The domain is said to be of finite type if these invariants are finite at each boundary point of the domain.

Ever since then,much attention paid to generalize these finite type conditions to the higher dimensional case.Kohn[2]defined the subelliptic multiplier ideals near each boundary point of a pseudoconvex domain,and if 1 is in any of these ideals,the boundary point is said to be of finite ideal type.In[3],D’Angelo introduced the D’Angelo finite type condition in terms of the order of contact with respect to singular complex analytic varieties.Both of these finite type conditions imply the existence of the sub-elliptic estimates.Bloom[4]generalized Kohn’s type conditions in C2directly to higher dimensional spaces.More precisely,for a smooth real hypersurfaceM?Cnandp∈M,Bloom defined the regular contact typea(s)(M,p),the commutator typet(s)(M,p)and the Levi-form typec(s)(M,p)ofMatp.Bloom conjectured in[4]that these three invariants are the same when the hypersurface is pseudoconvex,which is known as the Bloom conjecture.Bloom-Graham[5]and Bloom[6]proved the conjecture fors=n?1.In[4],Bloom showed thata(1)(M,p)=c(1)(M,p)whenM?C3.Recently,Huang-Yin[7]proved that the Bloom conjecture holds fors=n?2.This,in particular,gave a complete solution of the conjecture in complex dimension 3.

For a fixed(1,0)type vector fieldLat a pointpof a smooth real hypersurface,D’Angelo introduced the commutator typet(L,p)and the Levi form typec(L,p).

In fact,letM?Cnbe a smooth real hypersurface withp∈M,and letρbe a defining function ofMnearp.Denote byM1(L)theC∞(M)-module spanned byLandFor anyk≥1,we inductively defineMk(L)to be theC∞(M)-module spanned byMk?1(L)and the elements of the of form[X,Y]withX∈Mk?1(L)andY∈M1(L).We say the commutator typefor anyF∈Mm?1(L)butfor a certainG∈Mm(L).We define the Levi form typec(L,p)=mif for anym?3 vector if eldsF1,···,Fm?3ofM1(L),we have

and for a certain choice ofm?2 vector fieldsG1,···,Gm?2ofM1(L),we have

D’Angelo[8]conjectured that these two types equal to each other when the real hypersurface is pseudoconvex.He confirmed the conjecture when one of the type is exactly 4.The present paper is devoted to proving this conjecture when the real hypersurface is in C3.

Theorem 1.1LetMbe a smooth pseudoconvex hypersurface in C3andp∈M.For any fixed(1,0)vector fieldLnearp,we havet(L,p)=c(L,p).

2 Proof of Main Theorems

This section is devoted to the proof of Theorem 1.1.

Let(z1,,z2,w)be the coordinates in C3.Suppose thatp=0,and the defining function ofMtakes the form

For anyj=1,2,write

ThenL1andL2form a basis of the complex tangent vector fields of type(1,0)alongMnear 0.Suppose thatAfter a linear change of coordinates,we can assumeA1(0)60 andA2(0)=0.Notice that for any smooth functionfonMwithf(0)0,we havet(fL,0)=t(L,0)andc(fL,0)=c(L,0).Thus we can replaceLby,thenLtakes the form.

Denote byl0?2 the vanishing order ofand denote bym0?2 the vanishing order ofThe proof of main theorem is carried out for three cases,according to the values ofl0andm0.

Case IIn this case,we assumel0=m0=∞.

For any fixed integerk,after a holomorphic change of coordinates,we make

A direct computation shows thatt(L,0)≥kandc(L,0)≥k.By the arbitrariness ofk,we obtaint(L,0)=c(L,0)=+∞.

Case IIIn this case,we assumem0<∞andl0>m0.

After a holomorphic change of coordinates(see[4]or[7]),we makecontains no holomorphic or anti-holomorphic terms,and the terms of degreem0inis non-zero.Also,we make the vanishing order ofis at leastm0.Now,we introduce the following weighting system

Define

Denote byOwt(k)a smooth function or vector field with weighted degree at leastk.Then we have

Thus for any 1≤j≤m0?2 andX1,···,Xj∈M1(L),the weighted degree of terms in

are at leastm0?j+2.Hence both of them are 0 when restricted to the origin for any 1≤j≤m0?3.Whenj=m0?2,by considering the weighted degree,we know

and

here(Xh)?1is the sum of the vector field terms inXhof weighted degree?1.

Notice thatL?1is an(1,0)tangent field of the real hypersurface defined byρ(m0)=0,which must be pseudoconvex.By the finite type theory is dimension 2(see[9]),we havet(L?1,0)=c(L?1,0)=m0.Thus in(2.1)and(2.2),we can chooseXhfor 1≤h≤m0?2 such that the two expressions are non-zero.This meanst(L,0)=c(L,0)=m0.

Case IIIIn this case,we assumem0<∞andl0≤m0?1.

After a holomorphic change of coordinates,we eliminate the holomorphic and antiholomorphic terms inEup to orderm0,and get rid of the holomorphic terms inAup to orderl0.As in Case II,we define

Denote bym1the lowest weighted vanishing order ofρ(z,00)with the weights given in(2.3).Thenm1≤m0.Define

Write

By our construction and definition,we have

By a similar weighted degree estimate as in Case II,for any 1≤j≤m0?3 andX1,···,Xj∈M1(L),we know

Also,for anyX1,·,Xm1?2∈M1(L),we have

and

ConsiderL?1as a complex(1,0)tangent vector field ofM0:={ρ(m1)=0}.We claim thatt(L?1,0)=c(L?1,0)=m1.

SinceL?1is real analytic,by the Nagano Theorem,Re(L?1),Im(L?1)and their Lie brackets will generate a homogeneous real manifoldN0.

Suppose thatt(L?1,0)>m1,then for anyX1,·,Xm1?2∈M1(L?1),

On the other hand,for anyj≥0,is a weighted homogeneous polynomial of degreem1?j?2.Hence it must be 0 when(z,w)=0 and1?2.Thusj≥0,we have

Next,suppose thatc(L?1,0)>m1,then for anyj≤m1?3,X1,···,Xj∈M1(L),we have A similar weighted degree argument shows that for anyj≥0,X1,···,Xj∈M1(L?1),we have

The proof of Theorem 1.1 is completed.

主站蜘蛛池模板: 日韩午夜伦| 久久久久亚洲精品成人网| 茄子视频毛片免费观看| 中文无码日韩精品| 黄色一及毛片| 日韩高清一区 | 国产欧美高清| 亚洲日本www| 日本欧美精品| 男女精品视频| 日韩a在线观看免费观看| 亚洲人成色在线观看| 亚洲国内精品自在自线官| 99久久99视频| 天堂va亚洲va欧美va国产| yy6080理论大片一级久久| 久久中文无码精品| 九色91在线视频| 久久影院一区二区h| 亚洲第一国产综合| 中文无码毛片又爽又刺激| 亚洲欧洲日韩综合| 五月天丁香婷婷综合久久| 久久精品这里只有国产中文精品| 五月婷婷综合网| 国产小视频a在线观看| 麻豆国产精品一二三在线观看| 91久久大香线蕉| 久久国产亚洲偷自| 国产区免费精品视频| 亚洲一区二区视频在线观看| 99色亚洲国产精品11p| 国产美女精品一区二区| 玖玖精品在线| 国产精品女主播| 亚洲天堂免费在线视频| 好紧好深好大乳无码中文字幕| 国产欧美亚洲精品第3页在线| 亚洲欧美一区二区三区蜜芽| 五月天福利视频| 99热这里只有免费国产精品| 夜夜高潮夜夜爽国产伦精品| 综合色天天| 国产免费一级精品视频| 欧美精品亚洲精品日韩专区va| 午夜福利网址| 成人av手机在线观看| 欧美特级AAAAAA视频免费观看| 91免费国产在线观看尤物| 国产免费网址| 青草娱乐极品免费视频| 乱人伦中文视频在线观看免费| 99久久精品视香蕉蕉| 伊人AV天堂| 欧美黄色网站在线看| 99久久精品免费视频| 亚洲日韩AV无码精品| 天天躁夜夜躁狠狠躁躁88| 韩国v欧美v亚洲v日本v| 欧美色图久久| 国产精品区视频中文字幕| 亚洲国产日韩在线观看| 9久久伊人精品综合| 中文字幕首页系列人妻| 成年女人a毛片免费视频| 国产成人高精品免费视频| 欧美亚洲综合免费精品高清在线观看| 久久久四虎成人永久免费网站| a毛片在线| 91综合色区亚洲熟妇p| 亚洲侵犯无码网址在线观看| 久久香蕉国产线看观看精品蕉| 久久这里只精品国产99热8| Jizz国产色系免费| 欧美另类精品一区二区三区| 欧美一级高清视频在线播放| 天堂亚洲网| 国产亚洲欧美日韩在线一区二区三区| 操美女免费网站| 国产v精品成人免费视频71pao| 国产欧美综合在线观看第七页| 亚洲av成人无码网站在线观看|