999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE COMMUTATOR TYPE AND THE LEVI FORM TYPE IN C3

2020-08-13 10:31:44YINWankeYUANPingsanCHENYingxiang
數(shù)學雜志 2020年4期

YIN Wan-ke,YUAN Ping-san,CHEN Ying-xiang

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

Abstract:For any fixed(1,0)vector field of a pseudoconvex hypersurface in C3,we prove that its commutator type and Levi form type are equal to each other.This answers affirmatively a problem of D’Angelo in complex dimension three.

Keywords:finite type;pseudoconvex hypersurface;Bloom conjecture;sub-elliptic estimates

1 Introduction

The finite type conditions gave their rise from the investigation of the subellipticity of the-Neumann operator.For any boundary point of a smooth pseudoconvex domain in C2,Kohn[1]introduced three kinds of integer invariants,which are respectively the regular contact type,the commutator type and the Levi form type.Kohn proved that these invariants are equal to each other.When they are finite at a boundary point,the domain possesses local sub-elliptic estimates near this point.The domain is said to be of finite type if these invariants are finite at each boundary point of the domain.

Ever since then,much attention paid to generalize these finite type conditions to the higher dimensional case.Kohn[2]defined the subelliptic multiplier ideals near each boundary point of a pseudoconvex domain,and if 1 is in any of these ideals,the boundary point is said to be of finite ideal type.In[3],D’Angelo introduced the D’Angelo finite type condition in terms of the order of contact with respect to singular complex analytic varieties.Both of these finite type conditions imply the existence of the sub-elliptic estimates.Bloom[4]generalized Kohn’s type conditions in C2directly to higher dimensional spaces.More precisely,for a smooth real hypersurfaceM?Cnandp∈M,Bloom defined the regular contact typea(s)(M,p),the commutator typet(s)(M,p)and the Levi-form typec(s)(M,p)ofMatp.Bloom conjectured in[4]that these three invariants are the same when the hypersurface is pseudoconvex,which is known as the Bloom conjecture.Bloom-Graham[5]and Bloom[6]proved the conjecture fors=n?1.In[4],Bloom showed thata(1)(M,p)=c(1)(M,p)whenM?C3.Recently,Huang-Yin[7]proved that the Bloom conjecture holds fors=n?2.This,in particular,gave a complete solution of the conjecture in complex dimension 3.

For a fixed(1,0)type vector fieldLat a pointpof a smooth real hypersurface,D’Angelo introduced the commutator typet(L,p)and the Levi form typec(L,p).

In fact,letM?Cnbe a smooth real hypersurface withp∈M,and letρbe a defining function ofMnearp.Denote byM1(L)theC∞(M)-module spanned byLandFor anyk≥1,we inductively defineMk(L)to be theC∞(M)-module spanned byMk?1(L)and the elements of the of form[X,Y]withX∈Mk?1(L)andY∈M1(L).We say the commutator typefor anyF∈Mm?1(L)butfor a certainG∈Mm(L).We define the Levi form typec(L,p)=mif for anym?3 vector if eldsF1,···,Fm?3ofM1(L),we have

and for a certain choice ofm?2 vector fieldsG1,···,Gm?2ofM1(L),we have

D’Angelo[8]conjectured that these two types equal to each other when the real hypersurface is pseudoconvex.He confirmed the conjecture when one of the type is exactly 4.The present paper is devoted to proving this conjecture when the real hypersurface is in C3.

Theorem 1.1LetMbe a smooth pseudoconvex hypersurface in C3andp∈M.For any fixed(1,0)vector fieldLnearp,we havet(L,p)=c(L,p).

2 Proof of Main Theorems

This section is devoted to the proof of Theorem 1.1.

Let(z1,,z2,w)be the coordinates in C3.Suppose thatp=0,and the defining function ofMtakes the form

For anyj=1,2,write

ThenL1andL2form a basis of the complex tangent vector fields of type(1,0)alongMnear 0.Suppose thatAfter a linear change of coordinates,we can assumeA1(0)60 andA2(0)=0.Notice that for any smooth functionfonMwithf(0)0,we havet(fL,0)=t(L,0)andc(fL,0)=c(L,0).Thus we can replaceLby,thenLtakes the form.

Denote byl0?2 the vanishing order ofand denote bym0?2 the vanishing order ofThe proof of main theorem is carried out for three cases,according to the values ofl0andm0.

Case IIn this case,we assumel0=m0=∞.

For any fixed integerk,after a holomorphic change of coordinates,we make

A direct computation shows thatt(L,0)≥kandc(L,0)≥k.By the arbitrariness ofk,we obtaint(L,0)=c(L,0)=+∞.

Case IIIn this case,we assumem0<∞andl0>m0.

After a holomorphic change of coordinates(see[4]or[7]),we makecontains no holomorphic or anti-holomorphic terms,and the terms of degreem0inis non-zero.Also,we make the vanishing order ofis at leastm0.Now,we introduce the following weighting system

Define

Denote byOwt(k)a smooth function or vector field with weighted degree at leastk.Then we have

Thus for any 1≤j≤m0?2 andX1,···,Xj∈M1(L),the weighted degree of terms in

are at leastm0?j+2.Hence both of them are 0 when restricted to the origin for any 1≤j≤m0?3.Whenj=m0?2,by considering the weighted degree,we know

and

here(Xh)?1is the sum of the vector field terms inXhof weighted degree?1.

Notice thatL?1is an(1,0)tangent field of the real hypersurface defined byρ(m0)=0,which must be pseudoconvex.By the finite type theory is dimension 2(see[9]),we havet(L?1,0)=c(L?1,0)=m0.Thus in(2.1)and(2.2),we can chooseXhfor 1≤h≤m0?2 such that the two expressions are non-zero.This meanst(L,0)=c(L,0)=m0.

Case IIIIn this case,we assumem0<∞andl0≤m0?1.

After a holomorphic change of coordinates,we eliminate the holomorphic and antiholomorphic terms inEup to orderm0,and get rid of the holomorphic terms inAup to orderl0.As in Case II,we define

Denote bym1the lowest weighted vanishing order ofρ(z,00)with the weights given in(2.3).Thenm1≤m0.Define

Write

By our construction and definition,we have

By a similar weighted degree estimate as in Case II,for any 1≤j≤m0?3 andX1,···,Xj∈M1(L),we know

Also,for anyX1,·,Xm1?2∈M1(L),we have

and

ConsiderL?1as a complex(1,0)tangent vector field ofM0:={ρ(m1)=0}.We claim thatt(L?1,0)=c(L?1,0)=m1.

SinceL?1is real analytic,by the Nagano Theorem,Re(L?1),Im(L?1)and their Lie brackets will generate a homogeneous real manifoldN0.

Suppose thatt(L?1,0)>m1,then for anyX1,·,Xm1?2∈M1(L?1),

On the other hand,for anyj≥0,is a weighted homogeneous polynomial of degreem1?j?2.Hence it must be 0 when(z,w)=0 and1?2.Thusj≥0,we have

Next,suppose thatc(L?1,0)>m1,then for anyj≤m1?3,X1,···,Xj∈M1(L),we have A similar weighted degree argument shows that for anyj≥0,X1,···,Xj∈M1(L?1),we have

The proof of Theorem 1.1 is completed.


登錄APP查看全文

主站蜘蛛池模板: 亚洲午夜久久久精品电影院| 国产欧美在线观看一区| 亚洲视频四区| 性欧美久久| 激情在线网| 精品人妻一区二区三区蜜桃AⅤ| 女人av社区男人的天堂| 亚洲欧洲日韩综合色天使| 精品午夜国产福利观看| 人妻少妇久久久久久97人妻| 亚洲国产中文欧美在线人成大黄瓜 | 国产精品成人AⅤ在线一二三四| 亚洲成人77777| 伊人狠狠丁香婷婷综合色 | 成人在线观看一区| 国产精品视频3p| 伦精品一区二区三区视频| 国产剧情国内精品原创| 国产无码精品在线| 国产资源免费观看| 亚洲视频a| 亚洲精品免费网站| 国产激爽大片在线播放| 亚洲综合片| 欧美A级V片在线观看| 中文字幕免费播放| 欧美午夜视频| 久久精品一卡日本电影| 毛片国产精品完整版| 五月婷婷中文字幕| 欧美a在线| 国产国模一区二区三区四区| 亚洲第一黄片大全| 国产精品久久精品| 国产精品人成在线播放| 毛片三级在线观看| 色屁屁一区二区三区视频国产| 欧美成人免费午夜全| 亚洲自偷自拍另类小说| 亚洲无码视频图片| 亚洲av无码专区久久蜜芽| 2020亚洲精品无码| 四虎成人在线视频| 久草热视频在线| 亚洲综合一区国产精品| 亚洲熟女偷拍| 亚洲资源站av无码网址| 狠狠v日韩v欧美v| 久久永久精品免费视频| 国产精品网曝门免费视频| 欧美日韩成人| 天天躁夜夜躁狠狠躁躁88| 欧美一级高清免费a| 91青草视频| 国产乱人伦精品一区二区| 99精品久久精品| 国产精品九九视频| 久久久久九九精品影院| 国产日韩AV高潮在线| 无码日韩视频| 中文成人无码国产亚洲| 日韩大乳视频中文字幕| 欧美日韩专区| 亚洲婷婷在线视频| 手机永久AV在线播放| 日本在线国产| 国产女人18毛片水真多1| a级毛片视频免费观看| 国产永久在线视频| 国产精品永久在线| 日韩一二三区视频精品| 亚洲国产成人精品青青草原| 亚洲色偷偷偷鲁综合| 国产亚洲美日韩AV中文字幕无码成人 | 情侣午夜国产在线一区无码| 十八禁美女裸体网站| 亚洲一区二区成人| 亚洲第一色视频| 91精品国产91久久久久久三级| 亚洲综合一区国产精品| 奇米精品一区二区三区在线观看| 精品夜恋影院亚洲欧洲|