999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

INTEGRAL FORMULAS FOR COMPACT SUBMANIFOLDS IN EUCLID SPACE

2020-08-13 10:31:44WANGQiZHOUZhijin
數(shù)學(xué)雜志 2020年4期

WANG Qi,ZHOU Zhi-jin

(School of Mathematics and Information Science,Guiyang University,Guiyang 550005,China)

Abstract:In this paper,we study the problem of integral formulas for an oriented and compact n-dimension isometric immersion submanifold Mnwithout boundary in the(n+p)-dimension euclid space Rn+p.At first,we define the r-th higher order mean curvature Hr(0≤r≤n)along the direction of the unit mean curvature vector field ξ to Mn,and then we attain a new integral formula,by applying the method of moving frame and exterior differential,which generalizes a classical integral formula in the case of codimension p=1,that is in the case of hypersurfaces.

Keywords:euclid space;compact submanifold without boundary;mean curvature vector field;higher order mean curvature;integral formula

1 Introduction

It is well known that study on hypersurfaces and submanifolds in euclid space is one of fundamental tasks of differential geometry.For oriented and compact isometric immersion hypersurfaces in euclid space,references[1–3]ever established a classical integral formula,that is the following Theorem 1.1.

In this paper,we study an oriented and compactn-dimension isometric immersion submanifoldMnin the(n+p)-dimension euclid spaceRn+p.Letξbe the unit mean curvature vector field ofMn.At first,we define the higher order mean curvatureHr(r=0,1,2,···,n)along the directionξ.And then,by applying the method of moving frame and exterior differential,we attain a new integral formula,that is the following Theorem 1.2.When codimensionp=1,Theorem 1.2 becomes Theorem 1.1.

Theorem 1.1(see[1–3])Let?:M→Rn+1be an oriented and compact isometric immersion hypersurface without boundary.Then the following integral formulas hold

hereNis the unit normal vector field toM,Hkis thek-th higher order mean curvature ofMandis the euclid inner product inRn+1,dMis then-dimension Riemann volume form forM.

Theorem 1.2Let?:Mn→Rn+pbe an oriented and compactn-dimension isometric immersion submanifold without boundary.Then the following integral formulas hold

hereξis the unit mean curvature vector field toMn,Hkis thek-th higher order mean curvature along the directionξandis the euclid inner product inRn+p,dMis then-dimension Riemann volume form forMn.

2 Preparation

LetRn+pbe the(n+p)-dimension euclid space and(Mn,g)be a smoothn-dimension Riemann manifold.Denote by?:Mn→Rn+pa smooth immersion mapping between smooth manifolds.If the equationholds everywhere onMn,thenMnor?(Mn)is called an isometric immersion submanifold inRn+p.Hereis the euclid inner product ofRn+pand??is the pull-back mapping for the immersion mapping?.

In this paper,we prescribe the index range as

Denote by{eA}a local unit orthogonal frame field forRn+psuch that when being confined ontoMn,{ei}is a local unit tangent frame field toMnand{eα}is a local unit normal frame field toMn.

Denote by{ωA}the dual frame field for{eA},then the second fundamental formIIforMncan be expressed in component form as

Define the mean curvature vector fieldσtoMnas

It is well-known that the definition ofσis independent on the choice of the local unit orthogonal frame field{eA}.

We consider the unit mean curvature vector fieldξ=σ/|σ|.Let{λi}be the principal curvature functions along the directionξ,then ther-th higher order mean curvatureHr(r=1,2,...,n)is defined as

Reference[3]ever attained a fundamental integral formula that is the integral of the Codazzi tensor field on an isometric immersion hypersurface inRn+1.Similar to reference[3],forn-dimension isometric immersion submanifoldMnofRn+p,we attain the following Lemma 2.2.Here we firstly recall some relevant fundamental concepts and properties.Assume thatSis a tensor field of type(k,k)on a Riemann manifold(Mn,g).IfSis anti symmetric both to its each pair of covariant indices and to its each pair of contravariant indices,then we write

ForS∈Γ(End Λk(TM)),T∈Γ(End Λl(TM)),we also consider the tensor field of type(k+l,k+l),

and the definition ofS?Tis that the exterior product of covariant components ofSand the covariant components ofT,and respectively the exterior product of contravariant components ofSand the contravariant components ofT.And by reference[3],this product?is associative and commutative.

Definition 2.1(see[3],Codazzi tensor field)Let(Mn,g)be an-dimension Riemann manifold andS∈Γ(End Λk(TM)).If for allC∞vector fieldX1,X2,···,Xk+1∈Γ(TM)we have

thenSis called a Codazzi tensor field onMn,here?is the Levi-Civita connection of(Mn,g).

According to reference[3],we know that ifSandTare Codazzi tensor field respectively of type(k,k)and type(l,l)on(Mn,g),thenS?Tmust be a Codazzi field tensor field of type(k+l,k+l)onMn.From reference[3],we also define a Codazzi tensor fieldAof type(1,1)onMn.Let(Mn,g)be an-dimension Riemann manifold andψ:Mn→Rn+pbe an isometric immersion mapping.LetYbe the position vector field ofψ(Mn)inRn+p,then the Codazzi tensor fieldAof type(1,1)is determined by

Now we are ready to prove the following Lemma 2.2.

Lemma 2.2let(Mn,g)be an-dimension Riemann manifold andψ:Mn→Rn+pbe an oriented and isometric immersion mapping.Letψ(Mn)be compact and be without boundary.Assume thatSis a Codazzi tensor field of type(k,k)onMn,then the following integral formulas hold

HeredVis then-dimension Riemann volume form ofMnandtraceis the trace operator.

ProofDenote bydVthen-dimension Riemann volume form ofMn,then the following equation

determines a(n?1)form and it is written ashereYtanis the tangent component toMnof the position vectorYforψ(Mn)inRn+p.

From reference[3]and direct computation,we have

here?is the Levi-Civita connection of(Mn,g).At first we assume thatSis a Codazzi tensor field of type(n?1,n?1).

Let{ei}is an unit orthogonal frame forMnand write

We can seeω=α?Sas a(n?1)form which takes value in Γ(End Λk(TM).By the computation in reference[3],we have

BecauseSis a Codazzi tensor field,the second term of the above equation vanishes and so we have

BecauseMnis compact and is without boundary,And so Lemma 2.1 holds in the case thatSis a Codazzi tensor field of type(n?1,n?1).Now we assume thatSis a Codazzi tensor field of type(k,k).Denote byIthe identity element of Γ(End Λn?k?1(TM)).

BecauseIis parallel,I?Sis a Codizza tensor field of type(n?1,n?1).So from the above conclusion we have

Finally we notice that

we already finish the proof of Lemma 2.2.

3 Proof of Theorem 1.2

Theorem 1.2Let?:Mn→Rn+pbe an oriented and compactn-dimension isometric immersion submanifold without boundary.Then the following integral formulas hold.

hereξis the unit mean curvature vector field toMn,Hkis thek-th higher order mean curvature along the directionξandis the euclid inner product inRn+p,dMis then-dimension Riemann volume form forMn.

ProofLetTξbe the shape operator ofMnalong the direction of the unit mean curvature vector fieldξ,that is to say,Tξis a tensor field of type(1,1)onMndefined by

hereis the Levi-Civita connection ofRn+p.

Because the Levi-Civita connectionis flat,by the Codazzi equation for submanifold(see[4]),we know thatTξis a Codazzi tensor field of type(1,1)onMn.

Denote byλ1,λ2,···,λnthe characteristic values ofTξand byσrther-th fundamental homogeneous symmetry polynomial,that is

Denote by

the support function ofMnalong the directionξ.Then it is easy to seeA=?hTξ.By direct computation,we have

Now we recall once again the definition of the higher order mean curvatureHralong the unit mean curvature vector fieldξ

We notice the above(3.1),(3.2)and then we apply Lemma 2.2,we already finish the proof for Theorem 1.2.

主站蜘蛛池模板: 国产欧美又粗又猛又爽老| 国产毛片高清一级国语| 欧美啪啪网| 在线免费不卡视频| 久久99国产综合精品女同| 国产精品丝袜在线| 一级一级一片免费| 色噜噜狠狠色综合网图区| 好吊色国产欧美日韩免费观看| 99久久精品国产精品亚洲| 久久综合五月婷婷| 欧美日韩中文字幕在线| 福利小视频在线播放| 波多野结衣一二三| 亚洲三级网站| 国产97公开成人免费视频| 久久免费成人| 欧美午夜性视频| 国产精品极品美女自在线网站| 国产在线观看高清不卡| 九九香蕉视频| 欧美有码在线| 亚洲国产精品日韩欧美一区| 久久成人18免费| 国产成人精品亚洲77美色| 婷五月综合| 久久综合结合久久狠狠狠97色| 国产激爽大片在线播放| 国产av无码日韩av无码网站| 久久99精品久久久久久不卡| 伊人久久婷婷五月综合97色| 国产在线精彩视频论坛| 综合成人国产| 国产高清免费午夜在线视频| 高清无码不卡视频| 国产一区二区视频在线| 一级成人欧美一区在线观看| 丁香婷婷久久| A级全黄试看30分钟小视频| 少妇精品在线| 国产精品久久久久鬼色| 国产玖玖视频| 日韩午夜片| 国产原创第一页在线观看| 五月六月伊人狠狠丁香网| 99精品在线视频观看| 乱人伦视频中文字幕在线| 四虎永久免费地址| 毛片在线区| 国产永久无码观看在线| 国产精品自在拍首页视频8| 欧美日韩精品一区二区视频| 新SSS无码手机在线观看| 综合亚洲网| 国产一级二级三级毛片| av一区二区三区在线观看| 婷婷六月综合网| 女同国产精品一区二区| 亚洲国产91人成在线| 国产原创自拍不卡第一页| 免费看a级毛片| 国产日本视频91| 无遮挡一级毛片呦女视频| 日韩毛片视频| 91毛片网| 91视频国产高清| 91久久青青草原精品国产| 在线观看的黄网| 国产精品久久久久久久久久久久| 女人av社区男人的天堂| 欧美午夜在线观看| 欧亚日韩Av| 免费a在线观看播放| 毛片卡一卡二| 亚洲综合精品第一页| 天堂成人av| 在线观看国产一区二区三区99| 亚州AV秘 一区二区三区| 色网在线视频| 亚洲天堂网2014| 9966国产精品视频| 国产理论精品|