999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

組蛋白H1的研究進展

2020-08-28 09:45:24馬佳琦劉鵬
江蘇農業科學 2020年13期

馬佳琦 劉鵬

摘要:核小體是染色質的基本結構單位,DNA纏繞在組蛋白八聚體外側形成核小體。核小體的串珠結構在組蛋白H1的存在下形成緊密的30 nm染色質纖維。多種H1亞型的存在及其不同翻譯后修飾揭示組蛋白H1功能的復雜性。本文綜述了組蛋白H1的生物學功能,H1在表觀修飾、基因轉錄和DNA復制方面的調控機制,并概括了H1翻譯后修飾及其功能調控的研究進展,為H1的研究工作提供了參考。

關鍵詞:組蛋白H1;表觀遺傳修飾;基因轉錄;翻譯后修飾

中圖分類號: Q811.4文獻標志碼: A文章編號:1002-1302(2020)13-0034-07

收稿日期:2020-01-20

基金項目:國家科技重大專項轉基因生物新品種培育(編號:2018ZX08020003-003)。

作者簡介:馬佳琦(1995—),女,江蘇靖江人,碩士研究生,主要從事表觀遺傳研究。E-mail:812730438@qq.com。

通信作者:劉鵬,博士,助理研究員,主要從事表觀遺傳研究。E-mail:pengliu@yzu.edu.cn。染色質是真核生物遺傳物質的載體。核小體是染色質的基本結構單位,由組蛋白和DNA構成。組蛋白是染色質的基本結構蛋白,分別為H1、H2A、H2B、H3、H4,其中H1是最早發現的組蛋白,其余4種為核心組蛋白。組蛋白H2A、H2B、H3、H4各2個分子形成組蛋白八聚體,約147 bp DNA以左旋超螺旋方式纏繞在組蛋白八聚體構成的核心結構外,形成核小體[1-3]。組蛋白H1不構成核小體,而是將DNA與核小體緊扣在一起。作為染色體的基本結構蛋白,組蛋白H1在表觀調控、基因轉錄、DNA復制、DNA損傷修復、染色體重塑等方面發揮重要作用。本文將重點介紹組蛋白H1主要生物學功能及其發生的翻譯后修飾。

1組蛋白H1變體

1.1動物中H1亞型

組蛋白H1有多個變體。在人和小鼠中已經鑒定出了11種變體,包括7種體細胞亞型H1.0、H1.1、H1.2、H1.3、H1.4、H1.5、H1X,3種睪丸特異性亞型H1t、H1T2、HILS1和1種卵母細胞特異性亞型H1oo[4-5]。體細胞中H1.1-H1.5的表達依賴于DNA復制,而H1.0和H1X不依賴于DNA復制并且可以在非增殖細胞中表達[6]。H1.0則主要富集在已分化的細胞中[7]。在兩棲動物和禽類生物中,H1.0(在鳥類中稱為H5)主要富集在高度濃縮的惰性染色質中。在鳥類等紅細胞中的H5變體與哺乳動物中組蛋白H1.0具有較高同源性,雞紅細胞中H5占總H1含量的60%[8]。果蠅的幼蟲和成體中最初只發現1個H1變體。而后,鑒定出1個具有較長的氨基端的H1變體,命名為dBigH1,主要在胚胎發育初期表達[9]。dBigH1由單個基因編碼,為研究組蛋白功能提供了便利。

1.2植物中H1亞型

目前,在擬南芥中僅鑒定出3個組蛋白H1亞型H1.1、H1.2、H1.3[10-12]。這3個組蛋白H1富集度都與H3K4me3負相關,但相比較組蛋白H1.1、H1.2,組蛋白H1.3與H3K4me3的負相關程度低于H1.1和H1.2。H3K4me3修飾水平越高,H1.3表達水平越高;而與H3K4me3修飾相反,H3K9me2修飾水平越高,H1.3表達水平越低[13]。組蛋白H1.1和H1.2有85%的序列同源性,而H1.3與H1.1和H1.2基因的同源性較低。H1.3在脫落酸誘導時表達[11,14]。

2組蛋白H1結構

組蛋白H1分子由1個中央球狀結構域(globular domain)和氨基端結構域(amino-terminal domain)、羧基端結構域(carboxy-terminal domain)構成。在不同物種中氨基端和羧基端結構域序列變化較大,中央球狀結構域序列在所有H1變體中是高度保守的,這個結構是H1與核小體結合必需的[15-17]。在低等真核四膜蟲中組蛋白H1只包含1個羧基端尾巴[18]。

3組蛋白H1的生物學功能

3.1H1與核心組蛋白表觀修飾

真核生物通過核心組蛋白的翻譯后修飾和DNA甲基化來動態調控表觀修飾水平。組蛋白H1在基因組中分布并不是均一的,其分布受基因組環境的影響。試驗表明,在活躍轉錄基因的啟動子區,當H3K4me3等激活性組蛋白修飾富集,則組蛋白H1水平驟減。在異染色質或非轉錄區H1富集程度增加,抑制性組蛋白修飾水平也會同時增加,如H3K9me和H3K27me。因此,組蛋白H1調控核心組蛋白的翻譯后修飾狀態[19-21]。

研究發現,H1富集度與核心組蛋白的低乙酰化修飾緊密相關。H1通過負調控組蛋白乙酰轉移酶抑制組蛋白乙酰化[22]。人類中p300/CBP相關因子(p300/CBP-associated factor,PCAF)具有乙酰轉移酶活性,組蛋白H1的羧基端結構域會阻礙PCAF與組蛋白H3接近,從而抑制組蛋白H3發生乙酰化修飾。在果蠅中,H1對于維持雌性生殖細胞的干細胞是必需的。通常H1抑制乙酰轉移酶MOF活性,MOF可特異識別乙酰化H4K16位點,當H1減少時H4K16ac水平增加,導致雌性生殖細胞干細胞過早分化[23]。此外,組蛋白去乙酰化酶也參與調控這一過程。人類中組蛋白去乙酰化酶Sirtuin 1可使H4K16、H3K9、H1K26位點發生去乙酰化,維持H1富集狀態,同時H3K79me2修飾水平降低[24]。

H1參與調控抑制轉座元件活性。在果蠅生殖細胞中,轉座元件在轉錄和翻譯后水平受piRNAs(PIWI-interacting RNAs)調控,piRNAs與PIWI蛋白結合形成復合物,伴隨H3K9發生甲基化,抑制轉座子轉錄。進一步發現PIWI蛋白和H1發生相互作用,并招募異染色質蛋白(heterochromatin protein 1,HP1),實現異染色質化。PIWI蛋白減少會導致轉座元件附近的H1含量減少,使轉座元件去抑制[25]。盡管這一過程需要H1、H3K9me和HP1共同參與,然而H1減少后,靶位點染色質開放程度增加,H3K9me3修飾在這些位點的富集度不變,另一方面HP1的缺失不影響H1分布[25]。

H1也會影響另一個組蛋白抑制標記H3K27me。體外試驗發現,當存在H1的寡聚核小體時,PRC2-EZH2(enhancer of zeste 2)復合體可使H3K27甲基化。這是由于H1和hPRC2復合物中的SUZ12、EED和AEBP2組分相互作用導致的[26]。人的H1.2優先結合發生H3K27me3修飾的核小體,同時H3K27me3也會增加H1.2水平[27]。因此,H1和H3K27me3修飾之間形成一個正反饋環,二者共同維持染色質沉默狀態[27]。

DNA甲基化也是真核生物中一個重要的表觀遺傳標志[28]。在哺乳動物和植物中均發現H1與DNA甲基化密切聯系。在擬南芥中H1敲減突變體不能正常發育,這與DNA低甲基化突變體表型相似[29]。在小鼠ES細胞中,H1減少顯著影響某些區域DNA甲基化水平,特別在印記基因H19和Meg3的印記控制區呈現低甲基化[12]。在H1敲減的ES細胞中H1水平得到恢復后,印記基因H19和Meg3的甲基化水平相應的提高,從而抑制其基因表達[20]。由此推測H1調控在特異位點發生的DNA甲基化。多個H1亞型直接與DNA甲基轉移酶DNMT1和DNMT3B相互作用,將DNA甲基轉移酶招募到印記控制區。此外H1還參與調控X染色體連鎖的Hox基因簇[30]。H1減少的小鼠ES細胞中細胞分化受到影響,是因為全能性基因Oct4的表達受到抑制[31]。小鼠ES細胞中H1敲減實驗表明H1促進調控區域發生DNA甲基化,尤其是在增強子區域[32]。H1調控DNA甲基化對疾病機理研究來說也是非常重要的。例如,在淋巴B細胞中,觀察到編碼H1的基因發生突變,阻止了H1與DNMT3B的相互作用[33]。

3.2H1與基因表達

不同組蛋白H1亞型調控特定基因表達水平的上調和下調。在早期研究中,Shen等證明H1調控四膜蟲中的特定基因的表達[18]。Hashimoto等在雞細胞中建立H1敲除細胞系,敲除了所有的6種H1亞型,發現多種基因的表達受到影響,主要是基因表達水平下調[34]。在果蠅中,H1基因RNAi材料中發現H1減少后影響異染色區的基因表達,H1也是維持轉座因子沉默所必需的[35]。Skoultchi等發現,在小鼠中,單個H1亞型的減少可以影響位置效應斑(position effect variegation)和基因表達[36]。在小鼠ES細胞中同時敲除3個H1亞型后,H1總含量降低50%,而只有極少數特異性基因上調或下調,證明H1精準調控基因表達[37]。Sancho等在T47D乳腺癌細胞系中,用shRNA(short hairpin RNA)技術分別靶向沉默H1.0、H1.2、H1.3、H1.4或H1.5亞型,發現特定H1亞型的減少會影響不同基因的表達[38]。這種方法能夠快速沉默單個H1亞型,避免了由于常規基因敲除引起的劑量補償效應;然而,在shRNA沉默材料中可能存在低水平的目標蛋白[38]。

組蛋白H1還參與調控特定基因表達的模型。構建受激素誘導的小鼠MMTV(mouse mammary tumor virus)啟動子表達體系,最初發現在激素誘導條件下H1位置發生變化[39]。隨后研究發現,在激素誘導發生之前,H1就存在并有效促進轉錄[40]。事實上,H1發生磷酸化后與MMTV啟動子的結合使染色質構象發生改變,新的結構易于激素受體和轉錄因子結合[41-42]。

Kim等發現H1.2招募E3泛素連接酶cullin 4A(CUL4A)將H4K31位點泛素化,促進靶基因區組蛋白修飾激活標記H3K4me3和H3K79me2水平增加,從而增強靶基因轉錄[43]。H1.2選擇性識別RNA聚合酶Pol Ⅱ磷酸化位點Ser2,招募PAF1(RNA PolⅡ associated factor 1)和CUL4A,在特定位點維持活躍轉錄狀態[43]。

H1也與抑制特定基因有關。例如,H1參與干擾素應答基因的調控[44]。H1與轉錄抑制因子形成復合物。與抑制性染色質狀態相關的Msx1(Msh homeobox 1)蛋白,是肌肉細胞分化負調控因子,也是HP1蛋白的負調節因子。小鼠中Msx1將組蛋白H1b招募到MyoD(myogenic differentiation D)基因的關鍵調控元件區,從而呈現抑制性染色質狀態,抑制肌肉細胞分化[45]。

3.3H1與DNA復制

DNA復制中染色質結構進行重塑,組蛋白H1在DNA復制中發揮重要作用[46]。利用HeLa細胞提取物在體外重新構建SV40 DNA復制體系,發現當反應中H1與核心組蛋白的摩爾比大于1時,H1顯著減少SV40復制[47]。從處于細胞周期不同階段的細胞中提取H1用于體外實驗,發現來源于G0期和M期細胞的H1可以強烈抑制SV40 DNA復制,這可能與周期特異的H1翻譯后修飾有關[48]。不同的H1變體抑制DNA復制能力不同,這取決于H1羧基端結構,也與H1變體結合染色質親和力相關[49-50]。

果蠅幼蟲中發現H1調控核內復制。果蠅中H1是SUUR(protein suppressor of underreplication)蛋白的上游效應子[51]。在染色質延遲復制區,H1招募SUUR蛋白到多線染色體的異染色質區,阻遏復制叉前移,導致復制效率降低,異染色質區基因拷貝數減少。核內復制時H1在多線染色體上呈現出動態的時間分布。在S期,H1富集在延遲復制的位點上。在多頭絨泡菌(Physarum polycephalum)中也發現H1是復制過程中的重要調控因子,H1缺失會阻礙延遲復制進程[52]。

3.4H1與DNA損傷修復、基因組穩定

組蛋白H1含量的減少直接影響染色質結構,從而影響DNA損傷修復和基因組穩定性。HHO1是釀酒酵母(S. cerevisiae)H1的同系物,抑制同源重組影響DNA修復[53]。H1抑制果蠅基因組中轉座元件活性,H1缺失后導致基因組不穩定[19,35]。在果蠅幼蟲成蟲盤和唾液腺細胞中H1敲除引發過度重組和基因組重排,從而積累了源于rDNA的環狀DNA。果蠅H1減少會導致全基因組范圍DNA雙鏈斷裂的頻率增加[19]。

組蛋白H1與DNA修復機制中多個組分及DNA損傷應答因子之間發生相互作用。在人類中,E2泛素結合酶UBE2N(也稱UBC13)將H1泛素化,E3泛素連接酶RNF168識別泛素化的H1,導致在DSBs(double-stranded DNA breaks)處Lys63位泛素化修飾,從而招募DNA修復因子結合。人H1.0與Ku86、Ku70相互作用,而Ku86和Ku70形成二聚體與DSBs結合,它們的相互作用是非同源末端連接DNA修復所必需的[54]。

3.5H1與早期胚胎形成

研究發現存在在生殖細胞特異表達的H1。果蠅H1變體dBigH1在生殖細胞和在胚胎發育最初幾小時期間表達,在細胞化開始后它被體細胞dH1取代。dBigH1對早期胚胎發育至關重要,防止早熟的合子基因組激活[9]。在非洲爪蟾的卵子中發現母系表達B4蛋白是主要的連接組蛋白,在胚囊期被體細胞H1取代[55]。B4有利于開放染色質的形成,并導致依賴ATP的染色質重塑[56]。哺乳動物的卵母細胞中特異性組蛋白H1oo持續表達直至雙細胞胚胎末期[57]。延長H1oo的表達導致多能性標記基因的延長表達,并阻止細胞分化[58]。

4組蛋白H1的翻譯后修飾

組蛋白H1的氨基端或羧基端結構域經過翻譯后修飾發揮其生物學功能。

4.1H1磷酸化

早在20世紀70年代就發現了組蛋白H1磷酸化。到目前為止,對H1磷酸化研究較為充分[59]。組蛋白H1磷酸化主要發生在其羧基端特定的基序,這些基序能被細胞周期蛋白依賴性激酶(cyclin-dependent kinase,CDK)識別。H1磷酸化修飾參與DNA復制過程。H1磷酸化水平隨細胞周期變化[60-64],在G1期水平最低,在S期和G2期升高并在有絲分裂時達到最高,在末期急劇下降[62,65-66]。Talasz等發現,H1.5中Ser殘基磷酸化發生在G1期和S期,Thr磷酸化主要發生在有絲分裂期[62]。在有絲分裂中,CDK1/CycB(Cyclin B)主要負責H1磷酸化,但也有其他激酶參與。研究表明組蛋白H1本身是中期染色體凝聚所必需的[67],同時在有絲分裂細胞中誘導H1發生去磷酸化導致染色體去凝聚化[66,68]。

H1磷酸化也參與基因轉錄過程。H1磷酸化后,H1與染色質間結合減弱,有利于活性啟動子區域去除H1[41-42,69]。Vicent等發現磷酸化的H1參與調控受激素誘導的小鼠MMTV啟動子表達[69]。Zheng等在人類HeLaS3細胞中確定了3個磷酸化位點H1.2 S173p、H1.4 S172p、H1.4 S187p,這些磷酸化定位在核仁中。通過ChIP(chromatin immunoprecipitation)實驗表明H1.4 S187磷酸化富集在活性rRNA啟動子區及激素應答元件區,證明H1磷酸化參與調控RNA PolⅠ和RNA PolⅡ介導的轉錄[70]。

組蛋白H1磷酸化及其對染色質結合的影響也與DNA損傷修復相關。研究證實H1磷酸化的狀態確實可以指示DNA損傷程度[71]。發生低程度DNA損傷,只有少量H1分子磷酸化并從染色質中釋放出來,致使染色質解凝,從而允許修復損傷蛋白結合。如果DNA發生嚴重損傷,那么更多的H1被磷酸化并從染色質釋放出來,暗示DNA損傷已經超出可修復的范圍。Roque等分析了當H1與DNA結合時,H1的羧基端發生部分磷酸化和完全磷酸化對其二級結構的影響,發現磷酸化水平會影響羧基端的α螺旋、β結構以及無結構區域的比例,表明依賴磷酸化水平的結構重排[72],并且H1部分磷酸化損害了其凝聚染色質的能力[73]。因此,不同位點的H1磷酸化引起染色質的結構變化,進而影響染色質高級結構形成[72-73]。

4.2H1甲基化

在原生動物Euglena gracilisl中首次發現了H1賴氨酸甲基化[74]。組蛋白H1甲基化主要發生在其氨基端。H1.4的氨基端K26位點甲基化是人類H1發生最多的甲基化位點[75],K26位點甲基化在脊椎動物中是保守的[76]。在哺乳動物細胞中,PRC2-EZH2和G9a甲基轉移酶催化H1.4 K26甲基化,賴氨酸去甲基化酶JMJD2/KDM4催化其去甲基化[77-78]。H1.4 K26甲基化為HP1和L3MBTL1結合提供了基礎,這2種蛋白在異染色質形成中具有重要作用[79-80]。

4.3H1乙酰化

H1乙酰化發生在氨基端、羧基端和球狀區域。球狀結構域中的乙酰化位點大多直接參與DNA結合[81]。核心組蛋白乙酰化通常與開放染色質和活躍轉錄有關。H1乙酰化位點可直接影響H1與DNA結合,并導致H1位置發生改變。如果用組蛋白去乙酰化酶的抑制劑處理,一般難以區分H1乙酰化與核心組蛋白乙酰化[24,82]。

H1的氨基端發生的乙酰化參與轉錄調控。實驗證實組蛋白乙酰轉移酶GCN5(general control of amino acid synthesis 5)乙酰化H1.4 K34位點,招募轉錄因子TFⅡD(transcription factor ⅡD)的亞基TAF1,致使H1與染色質的結合能力降低,從而激活轉錄。H1.4 K34乙酰化在活躍轉錄的啟動子處富集[83]。

4.4H1泛素化

在2000年,Pham和Sauer發現在果蠅中存在由TAFⅡ250誘導的H1單泛素化[84]。TAFⅡ2 50是轉錄因子TFⅡD的一個亞基,參與基因轉錄。當TFⅡD失活時,組蛋白H1泛素化水平和基因表達水平均降低。果蠅中發現H1的3個位點K23、K27、K165均可泛素化[85]。小鼠HRF(+)細胞中觀察到,H1.5單泛素化對于HIV-1抗性產生很重要[86]。

4.5其他H1翻譯后修飾

H1還有其他各種翻譯后修飾,包括瓜氨酸化、甲酰化、脫硝、ADP-核糖基化、巴豆酰化等,但它們的功能仍有待闡明。

5總結

過去數十年間,組蛋白H1的研究取得了實質性進展。一方面,作為染色質重要的結構蛋白,H1各種變體以不同方式與核小體結合穩定核小體結構,從而形成多樣的染色質高級結構。另一方面,H1作為染色質中重要的調控蛋白,通過與其他蛋白相互作用而發揮生物學功能。科學家將從更多的方面探索H1特性和功能,借助結構生物學方法揭示不同物種中的H1在染色質結構組織的特點及表觀修飾存在下H1如何調控染色質高級結構的變化,利用反向遺傳學方法從不同H1亞型突變體材料著手研究H1調控通路的分子機制。

參考文獻:

[1]Olins A L,Olins D E. Spheroid chromatin units (ν bodies)[J]. Science,1974(4122):330-332.

[2]Kornberg R D. Chromatin structure:a repeating unit of histones and DNA[J]. Science,1974,184(4139):868-871.

[3]Kornberg R D,Thonmas J O. Chromatin structure:oligomers of the histones[J]. Science, 1974,184(4139):865-868.

[4]Izzo A,Kamieniarz K,Schneider R. The histone H1 family:specific members,specific functions?[J]. Biological Chemistry,2008,389(4):333-343.

[5]Parseghian M H,Hamkalo B A. A compendium of the histone H1 family of somatic subtypes:an elusive cast of characters and their characteristics[J]. Biochemistry & Cell Biology,2001,79(3):289-304.

[6]Happel N,Warneboldt J,HNecke K,et al. H1 subtype expression during cell proliferation and growth arrest[J]. Cell Cycle,2009,8(14):2226-2232.

[7]Zlatanova J,Doenecke D. Histone H1 zero:a major player in cell differentiation?[J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology,1994,8(15):1260.

[8]Bates D L,Thomas J O. Histories H1 and H5:one or two molecules per nucleosome?[J]. Nucleic Acids Research,1981,9(22):5883-5894.

[9]Pérezmontero S,Carbonell A,Morán T,et al. The embryonic linker histone H1 variant of Drosophila,dbigH1,regulates zygotic genome activation[J]. Developmental Cell,2013,26(6):578-590.

[10]Gantt J S,Lenvik T R. Arabidopsis Thaliana H1 histones. Analysis of two members of a small gene family[J]. European Journal of Biochemistry,1992,202(3):1029-1039.

[11]Ascenzi R,Gantt J S. Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana[J]. Plant Molecular Biology,1999,41(2):159-169.

[12]Fan Y,Nikitina T,Zhao J,et al. Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation[J]. Cell,2005,123(7):1199-1212.

[13]Rutowicz K,Puzio M,Halibart-Puzio J,et al. A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis[J]. Plant Physiology,2015,169(3):2080-2101.

[14]Ascenzi R A,Gantt J S. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants[J]. Plant Molecular Biology,1997,34(4):629-641.

[15]Ramakrishnan V,Finch J T,Graziano V,et al. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding[J]. Nature,1993,362(6417):219-223.

[16]Zhou B R,Jiang J,Feng H,et al. Structural mechanisms of nucleosome recognition by linker histones[J]. Molecular Cell,2015,59(4):628-638.

[17]Zhou B R,Feng H,Ghirlando R,et al. A small number of residues can determine if linker histones are bound on or off dyad in the chromatosome[J]. Journal of Molecular Biology,2016:S0022283616303308.

[18]Shen X,Gorovsky M A. Linker histone H1 regulates specific gene expression but not global transcription in vivo[J]. Cell,1996,86(3):475-483.

[19]Lu X W,Wontakal S N,Kavi H,et al. Drosophila H1 regulates the genetic activity of heterochromatin by recruitment of Su(var)3-9[J]. Science,2013,340(6128):78-81.

[20]Yang S M,Kim B J,Norwood Toro L,et al. H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation[J]. Proceedings of the National Academy of Sciences,2013,110(5):1708-1713.

[21]Stützer A,Liokatis S,Kiesel A,et al. Modulations of DNA contacts by linker histones and post-translational modifications determine the mobility and modifiability of nucleosomal H3 tails[J]. Molecular Cell,2016:S1097276515009715.

[22]Herrera J E,West K L,Schiltz R L,et al. Histone H1 is a specific repressor of core histone acetylation in chromatin[J]. Molecular & Cellular Biology,2000,20(2):523-529.

[23]Jin S,Wei H M,Jiang X,et al. Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation[J]. Nature Communications,2015,6:8856.

[24]Vaquero A,Scher M,Lee D,et al. Human Sirt1 interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Molecular Cell,2004,16(1):93-105.

[25]Iwasaki Y W,Murano K,Ishizu H,et al. Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons[J]. Molecular Cell,2016,63(3):408-419.

[26]Martin C,Cao R,Zhang Y. Substrate preferences of the EZH2 histone methyltransferase complex[J]. Journal of Biological Chemistry,2006,281(13):8365-8370.

[27]Kim J M,Kim K,Punj V,et al. Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3[J]. Scientific Reports,2015,5(1):16714.

[28]Du J,Johnson L M,Jacobsen S E,et al. DNA methylation pathways and their crosstalk with histone methylation[J]. Nature Reviews Molecular Cell Biology,2015,16(9):519-532.

[29]Wierzbicki T A. Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation[J]. Genetics,2005,169(2):997-1008.

[30]Maclean J A,Bettegowda A,Kim B J,et al. The Rhox homeobox gene cluster is imprinted and selectively targeted for regulation by histone H1 and DNA methylation[J]. Molecular & Cellular Biology,2011,31(6):1275-1287.

[31]Zhang Y,Cooke M,Panjwani S,et al. Histone H1 depletion impairs embryonic stem cell differentiation[J]. PLoS Genetics,2012,8(5):e1002691.

[32]Geeven G,Zhu Y,Kim B J,et al. Local compartment changes and regulatory landscape alterations in histone H1-depleted cells[J]. Genome Biology,2015,16(1):289.

[33]Li H,Kaminski M S,Li Y,et al. Mutations in linker histone genes HIST1H1 b,c,d,and e; OCT2 (pou2f2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma[J]. Blood,2014,123(10):1487-1498.

[34]Hashimoto H,Takami Y,Sonoda E,et al. Histone H1 null vertebrate cells exhibit altered nucleosome architecture[J]. Nucleic Acids Research,2010(11):11.

[35]Olivera V,Katrin Z,Alejandro V,et al. Drosophila melanogaster linker histone dH1 is required for transposon silencing and to preserve genome integrity[J]. Nucleic Acids Research,2012(12):12.

[36]Lu X,Wontakal S N,Emelyanov A V,et al. Linker histone H1 is essential for Drosophila development,the establishment of pericentric heterochromatin,and a normal polytene chromosome structure[J]. Genes & Development,2009,23(4):452-465.

[37]Alami R,Fan Y,Pack S,et al. Mammalian linker-histone subtypes differentially affect gene expression in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(10):5920-5925.

[38]Sancho M,Diani E,Beato M,et al. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth[J]. PLoS Genetics,2008,4(10):e1000227.

[39]Bresnick E H,Michael B,Veronique M,et al. The transcriptionally-active mmtv promoter is depleted of histone H1[J]. Nucleic Acids Research,1992(2):2.

[40]Akash G,Brown D T. Overproduction of histone H1 variants in vivo increases basal and induced activity of the mouse mammary tumor virus promoter[J]. Nucleic Acids Research,1999(16):16.

[41]Koop,R. Histone H1 enhances synergistic activation of the mmtv promoter in chromatin[J]. EMBO Journal,2003,22(3):588-599.

[42]Belikov S,Astrand C,Wrange O. Mechanism of histone H1-stimulated glucocorticoid receptor DNA binding in vivo[J]. Molecular & Cellular Biology,2007,27(6):2398-2410.

[43]Kim K,Lee B,Kim J,et al. Linker histone H1.2 cooperates with CUL4a and PAF1 to drive H4K31 Ubiquitylation-mediated transactivation[J]. Cell Reports,2013,5(6):1690-1703.

[44]Shinichi K,Kyosuke N. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone taf-i[J]. Nucleic Acids Research,2014(12):12.

[45]Lee H. Msx1 cooperates with histone H1b for inhibition of transcription and myogenesis[J]. Science,2004,304(5677):1675-1678.

[46]Flickinger R A. Possible role of H1 histone in replication timing[J]. Development Growth & Differentiation,2014,57(1):1-9.

[47]Halmer L,Gruss C. Influence of histone H1 on the in vitro replication of DNA and chromatin[J]. Nucleic Acids Research,1995,23(5):773-778.

[48]Halmer L. Effects of cell cycle dependent histone H1 phosphorylation on chromatin structure and chromatin replication[J]. Nucleic Acids Research,1996,24(8):1420-1427.

[49]Lu Z H,Sittman D B,Romanowski P,et al. Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin[J]. 1998,9(5):1163.

[50]De S,Brown D T,Lu Z H,et al. Histone H1 variants differentially inhibit DNA replication through an affinity for chromatin mediated by their carboxyl-terminal domains[J]. Gene,2002,292(1/2):173-181.

[51]Andreyeva E N,Bernardo T J,Kolesnikova T D,et al. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila[J]. Genes& Development,2017,31(6):603-616.

[52]Thiriet C,Hayes J J. Linker histone phosphorylation regulates global timing of replication origin firing[J]. Journal of Biological Chemistry,2008,284(5):2823-2829.

[53]Downs J A,Kosmidou E,Morgan A,et al. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone[J]. Molecular Cell,2003,11(6):0-1692.

[54]Kalashnikova A A,Winkler D D,Mcbryant S J,et al. Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus[J]. Nucleic Acids Research,2013,41(7):4026-4035.

[55]Dworkin-Rastl E,Kandolf H,Smith R C. The maternal histone H1 variant,H1M (B4 protein),is the predominant H1 histone in Xenopus pregastrula embryos[J]. Developmental Biology,1994,161(2):0-439.

[56]Saeki H,Ohsumi K,Aihara H,et al. Linker histone variants control chromatin dynamics during early embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(16):5697-5702.

[57]Tanaka M. H1foo is coupled to the initiation of oocytic growth[J]. Biology of Reproduction,2004,72(1):135-142.

[58]Hayakawa K,Ohgane J,Tanaka S,et al. Oocyte-specific linker histone H1foo is an epigenomic modulator that decondenses chromatin and impairs pluripotency[J]. Epigenetics Official Journal of the DNA Methylation Society,2012,7(9):1029-1036.

[59]Roth S Y,Allis C D. Chromatin condensation:Does histone H1 dephosphorylation play a role?[J]. Trends in Biochemical Sciences,1992,17(3):93-8.

[60]Porto R M,Amino R,Elias M C Q,et al. Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi[J]. Molecular & Biochemical Parasitology,2002,119(2):265-71.

[61]Yamshita M,Fukada S,Yoshikuni M,et al. M-phase-specific histone H1 kinase in fish oocytes:purification,components and biochemical properties [J]. Eur J Biochem,1992,205(2):537-543.

[62]Talasz H,Helliger W,Puschendorf B,et al. In vivo phosphorylation of histone H1 variants during the cell cycle[J]. Biochemistry,1996,35(6):1761-1767.

[63]Gutiyama L M. Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis[J]. Eukaryotic Cell,2008,7(4):560.

[64]Baatout S,Derradji H. About histone H1 phosphorylation during mitosis[J]. Cell Biochemistry & Function,2010,24(2):93-94.

[65]Gréen A,Sarg B,Gréen H,et al. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells[J]. Epigenetics & Chromatin,2011,4(1):15.

[66]Gurley L R,Valdez J G,Buchanan J S. Characterization of the mitotic specific phosphorylation site of histone h1. Absence of a consensus sequence for the P34CDC2/Cyclin b kinase[J]. Journal of Biological Chemistry,1995,270(46):27653-27660.

[67]Maresca J T. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts[J]. Journal of Cell Biology,2005,169(6):859-869.

[68]Thng J P,Guo X W,Swank R A,et al. Inhibition of histone phosphorylation by staurosporine leads to chromosome decondensation[J]. Journal of Biological Chemistry,1994,269(13):9568.

[69]Vicent G P,Nacht A S,Font-Mateu J,et al. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation[J]. Genes&Development,2011,25(8):845-862.

[70]Zheng Y,John S,Pesavento J J,et al. Histone H1 phosphorylation is associated with transcription by RNA polymerases Ⅰ and Ⅱ[J]. Journal of Cell Biology,2010,189(3):407-415.

[71]Chubb J E,Rea S. Core and linker histone modifications involved in the DNA damage response[J]. Subcell Biochem,2010,50:17-42.

[72]Roque A,Iloro I,Ponte I,et al. DNA-induced secondary structure of the carboxyl-terminal domain of histone H1[J]. Journal of Biological Chemistry,2005,280(37):32141-32147.

[73]Rita L,Bettina S,Herbert L,et al. Linker histone partial phosphorylation:Effects on secondary structure and chromatin condensation[J]. Nucleic Acids Research,2015(9):9.

[74]Tuck M T,Farooqui J Z,Paik W K. Two histone H1-specific protein-lysine n-methyltransferases from Euglena gracilis. Purification and characterization[J]. Journal of Biological Chemistry,1985,260(11):7114.

[75]Lu A,Zougman A,PudeKo M,et al. Mapping of lysine monomethylation of linker histones in human breast and its cancer[J]. Journal of Proteome Research,2009,8(9):4207-4215.

[76]Deterding L J,Bunger M K,Banks G C,et al. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 isoforms upon CDK inhibitor treatment using mass spectrometry[J]. Journal of Proteome Research,2008,7(6):2368-2379.

[77]Kuzmichev A,Jenuwein T,Tempst P,et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3[J]. Molecular Cell,2004,14(2):0-193.

[78]Ohe Y,Hayashi H,Iwai K. Human spleen histone H1. Isolation and amino acid sequence of a main variant,H1b[J]. Journal of Biochemistry,1986,100(2):359-368.

[79]Daujat S,Zeissler U,Waldmann T,et al. HP1 binds specifically to Lys26-methylated histone H1.4,whereas simultaneous Ser27 phosphorylation blocks HP1 binding[J]. Journal of Biological Chemistry,2005,280(45):38090-38095.

[80]Trojer P,Zhang J,Yonezawa M,et al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the jumonji domain-containing JMJD2/KDM proteins[J]. Journal of Biological Chemistry,2009,284(13):8395-8405.

[81]Wisniewski J R,Zougman A,Kruger S,et al. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations,methylations,and phosphorylation as well as differences between cell culture and tissue[J]. Molecular & Cellular Proteomics,2006,6(1):72-87.

[82]Terme J M,Millán-Ario L,Mayor R,et al. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications[J]. FEBS Letters,2014,588(14):2353-2362.

[83]Kamieniarz K,Izzo A,Dundr M,et al. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation[J]. Genes&Development,2012,26(8):797-802.

[84]Pham A D,Sauer F. Ubiquitin-activating/conjugating activity of TAFII250,a mediator of activation of gene expression in Drosophila[J]. Science,2000,289(5488):2357-2360.

[85]Bonet-Costa C,Vilaseca M,Diema C,et al. Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1[J]. Journal of Proteomics,2012,75(13):4124-4138.

[86]Lesner A,Kartvelishvili A,Lesniak J,et al. Monoubiquitinated histone H1b is required for antiviral protection in CD4+T cells resistant to HIV-1[J]. Biochemistry,2004,43(51):16203-16211.

主站蜘蛛池模板: 久久成人18免费| 成年人国产网站| 日本成人在线不卡视频| 中文纯内无码H| 成人精品午夜福利在线播放| 中日韩一区二区三区中文免费视频 | 亚洲精品成人福利在线电影| 在线亚洲精品自拍| 久久精品国产精品青草app| 国产成人综合欧美精品久久| 久久综合色天堂av| 国产激情第一页| 国产白丝av| 免费人成网站在线观看欧美| 亚洲 欧美 偷自乱 图片 | 在线五月婷婷| 天堂在线亚洲| 亚洲高清日韩heyzo| 国内精品视频| 亚洲精品福利网站| 成年人久久黄色网站| 精品撒尿视频一区二区三区| 国产你懂得| 免费看一级毛片波多结衣| 五月六月伊人狠狠丁香网| 亚洲欧美自拍中文| 亚洲第一中文字幕| 99精品伊人久久久大香线蕉 | 视频二区国产精品职场同事| 激情综合婷婷丁香五月尤物| 成人毛片在线播放| 国产成人免费视频精品一区二区| 日本精品视频| 一级成人a做片免费| 在线永久免费观看的毛片| 99视频精品在线观看| 国产不卡在线看| 日本影院一区| 97久久超碰极品视觉盛宴| 国产丰满大乳无码免费播放| 91青草视频| 欧美精品亚洲精品日韩专| 伊人久久精品无码麻豆精品| a天堂视频| 亚洲午夜福利在线| 国产传媒一区二区三区四区五区| 青青青草国产| 亚洲综合第一页| 亚洲精品图区| 视频二区中文无码| 国产成人亚洲精品蜜芽影院| 欧美精品v日韩精品v国产精品| 久久久精品无码一二三区| 538精品在线观看| 色精品视频| 亚洲国产无码有码| 操美女免费网站| 色135综合网| 成人在线视频一区| www.youjizz.com久久| 欧美亚洲激情| 中文字幕一区二区人妻电影| 久久国产精品波多野结衣| 久久黄色一级视频| 国产新AV天堂| 色综合激情网| 一级做a爰片久久免费| 91精品啪在线观看国产| 亚洲综合九九| 日韩欧美国产中文| 热热久久狠狠偷偷色男同| 免费看久久精品99| 日韩欧美国产精品| 成人国产精品2021| 日韩无码黄色| 久久香蕉欧美精品| 国产在线观看人成激情视频| 青青青国产视频| 久青草网站| 亚洲另类色| 国产在线专区| 久久久久久尹人网香蕉|