朱靖林,商 波,楊志剛,李金耀,李有元
(云南建投第一勘察設計有限公司,云南 昆明 650102)
混凝土作為我國建筑中一種廣泛使用的材料,其抗壓強度是否合格是關乎建筑物安全的重要因素。因此,科學、合理評定混凝土抗壓強度等級,對于確定建筑物是否安全具有重要的意義。回彈法檢測完畢后計算混凝土抗壓強度推定值時測強曲線應如何選擇,是評定混凝土抗壓強度是否合格的重中之重。
目前國內已發表的文獻中,行業標準 JGJ/T 23-2011《回彈法檢測混凝土抗壓強度技術規程》[1]和云南省地方標準 DBJ 53/T-52-2013《回彈法檢測混凝土抗壓強度技術規程》[2]兩本標準的對比分析文獻尚未出現,故本文結合實際工程項目的檢測數據采用不同測強曲線對泵送混凝土抗壓強度推定值進行計算和分析[3],對云南地區泵送混凝土抗壓強度推定值計算具有重要意義。
行業標準 JGJ/T 23-2011《回彈法檢測混凝土抗壓強度技術規程》(以下簡稱“行標”)最新版本于2011 年 12 月 1 日開始實施;云南省地方標準 DBJ 53/T-52-2013《回彈法檢測混凝土抗壓強度技術規程》(以下簡稱“地標”)于 2014 年 1 月 1 日開始實施,對于同一個混凝土構件,采用行標中的全國統一測強曲線和地標中的測強曲線計算出的泵送混凝土抗壓強度推定值存在一定的差異,本文就兩者存在的差異進行一定的探討。
泵送混凝土在各方面與傳統混凝土均存在很大差別。行標中,泵送混凝土的全國統一測強曲線方程為:

從式(1)可以得出,只需知道回彈強度平均值 R 和碳化深度 dm就能計算出混凝土強度換算值 f,根據行標中泵送混凝土的全國統一測強曲線方程采用 excel 可以繪出在 dm=1.0;dm=2.0;dm=3.0 時的曲線圖(見圖 1)。

圖1 行標中不同 dm 值對應的強度換算值 f
從圖1中可以看出,泵送混凝土強度換算值 f 隨著強度平均值R的增大而增大;在圖中所給出的三種碳化值中,dm=1.0對應的強度換算值 f 最大;dm=2.0時對應的強度換算值 f 其次;dm=3.0 時對應的強度換算值 f 最小。
地標中,泵送混凝土的測強曲線方程為:

與行標中的全國統一測強曲線方程同理,只需知道回彈強度平均值 R 和碳化深度 dm就能計算出混凝土強度換算值 f,根據地標中的測強曲線方程采用 excel 可以繪出在 dm=1.0;dm=2.0;dm=3.0 時的曲線圖如圖 2 所示。

圖2 地標中不同 dm 值對應的強度換算值 f
從圖 2 中可以看出,強度換算值 f 隨著強度平均值 R 的增大而增大;在圖中所給出的三種碳化值中,dm=1.0 時對應的強度換算值 f 最大;dm=2.0 時對應的強度換算值 f 其次;dm=3.0 時對應的強度換算值 f 最小。
根據行標和地標中的相關條文說明,地標中給出的測強曲線方程的試驗數據一共 11 557 組,其中絕大部分數據來自于昆明地區,在處理試驗數據前,已將昆明地區以外的數據剔除,而后將剩下的 8 144 組數據采用最小二乘法進行處理,通過回歸后得出測強曲線方程。行標中的全國統一測強曲線方程平均相對誤差為±13.89 %;相對標準差 17.24 %;相關系數:0.878;地標中的測強曲線方程平均相對誤差為±9.98 %;相對標準差 12.16 %;相關系數:0.906。兩者相比,地標中的測強曲線方程強度誤差值比全國統一測強曲線方程的強度誤差值小,說明地標中給出的測強曲線方程在昆明地區具有良好的適應性和可靠性。地標中的測強曲線方程僅適用于昆明地區。
位于昆明地區的實際工程項目可以采用行標中的全國統一測強曲線計算泵送混凝土強度推定值,也可采用地標中的測強曲線計算泵送混凝土強度推定值。
本次項目為昆明地區某水泥廠所有廠房混凝土質量檢測,結合工程實際情況,本次檢測采用回彈法,并測定各個構件的碳化深度值。所有廠房一共抽檢 127 個混凝土構件,采用行標中的全國統一測強曲線和地標中的測強曲線分別對其進行計算和分析。
當碳化深度值 dm=1.0 時,用地標測強曲線和行標中的全國統一測強曲線分別計算,然后將得出的混凝土強度推定值 f 繪制成圖(見圖 3)。
當碳化深度值 dm=2.0 時,用地標測強曲線和行標中的全國統一測強曲線分別計算,然后將得出的混凝土強度推定值 f 繪制成圖(見圖 4)。

圖3 碳化值 dm=1.0 時不同標準的計算結果

圖4 碳化值 dm=2.0 時不同標準的計算結果

圖5 碳化值 dm=3.0 時不同標準的計算結果
當碳化深度值 dm=3.0 時,用地標測強曲線和行標中的全國統一測強曲線分別計算,然后將得出的混凝土強度推定值 f 繪制成圖(見圖 5)。
從圖 3、圖 4 和圖 5 可以得出,所有采用地標測強曲線計算出的混凝土強度推定值均大于所有采用行標中的全國統一測強曲線計算出的混凝土強度推定值。對比 127 個構件的計算結果,當碳化深度值 dm=1.0 時,地標測強曲線的計算結果平均值比行標中全國統一測強曲線的計算結果平均值大 5.4 MPa,兩者的差距大約為22.4 %;當碳化深度值 dm=2.0 時,地標測強曲線的計算結果平均值比行標中全國統一測強曲線的計算結果平均值大 5.2 MPa,兩者的差距大約為 22.2 %;當碳化深度值 dm=3.0 時,地標測強曲線的計算結果平均值比行標中全國統一測強曲線的計算結果平均值大 5.0 MPa,兩者的差距大約為 22.1 %。兩者的計算結果存在很大差異,地標測強曲線的計算結果比行標中的全國統一測強曲線的計算結果高出大約一個強度等級。
上節提出,當回彈強度平均值 R 和碳化深度 dm值一定時,分別采用行標中的全國統一測強曲線和地標測強曲線計算混凝土強度推定值,所得結果相差 5 MPa 左右,二者的差距大約為一個強度等級。究其原因可得,兩種測強曲線方程差別過大,具體原因分析如下:
行標中,泵送混凝土抗壓強度推定值的全國統一測強曲線方程為:
f=0.344 88R1.940010-0.0173dm
地標中,泵送混凝土抗壓強度推定值的測強曲線方程為:
f=(0.002 2 R2+1.506 R-16.00)10-0.0173dm
對比 2 個測強曲線方程可以得出,兩個方程的不同之處在于 10-0.0173dm前的系數。將此系數用字母 A 表示,行標中的全國統一測強曲線方程中此系數為0.344 88R1.9400,即 A行=0.344 88R1.9400;地標測強曲線方程中此系數為(0.002 2 R2+1.506 R-16.00),即 A地=0.002 2 R2+1.506 R-16.00。
假設碳化深度值 dm一定,回彈強度平均值 R 的取值為 20≤R≤50 時,兩個系數 A行和 A地的計算結果可用圖 6 表示。

圖6 A行和 A地計算結果對比圖
從圖 6 可以看出,兩個系數 A行和 A地的計算結果隨著強度平均值 R 的增大而增大。當強度平均值的取值為 20≤R<45.9 時,A行的計算結果均小于 A地的計算結果,強度平均值 R=30 時,兩者的計算結果相差最大,取 R=30 作為中間值,當20≤R<30時,A行與 A地的計算結果差值逐漸增大;當30<R≤45.9時,A行與 A地的計算結果差值逐漸減?。划攺姸绕骄?R=45.9 時,A行的計算結果約為 57.8,A地計算結果約為 57.8,兩個系數的計算結果相等;當強度平均值的取值為 45.9<R≤50 時,A地的計算結果小于 A行的計算結果,且兩者的計算結果差值逐漸增大。
由此可得,當回彈強度平均值 R<45.9 時,采用行標中的全國統一測強曲線計算混凝土強度推定值 f 小于地標測強曲線計算混凝土強度推定值 f;當回彈強度平均值 R>45.9 時,采用行標中的全國統一測強曲線計算混凝土強度推定值 f 大于地標測強曲線計算混凝土強度推定值 f;當回彈強度平均值 R=45.9 時,采用行標中的全國統一測強曲線計算的混凝土強度推定值 f 與采用地標測強曲線的計算結果相等。
本文就行業標準 JGJ/T 23-2011《回彈法檢測混凝土強度抗壓技術規程》和云南省地方標準 DBJ 53/T-52-2013《回彈法檢測混凝土抗壓強度技術規程》計算泵送混凝土抗壓強度推定值進行對比分析,分析了碳化深度 dm、平均回彈值 R 對混凝土強度推算值 f 的影響。并采用行標中的全國統一測強曲線和地標的測強曲線對實際工程項目進行計算,并對計算數據進行處理后得到以下結論:地標測強曲線的計算結果均大于行標中全國統一測強曲線的計算結果,前者大于后者 5 MPa 左右,兩者的計算結果相差大約一個強度等級。
因地標中測強曲線方程的試驗數據僅來自于昆明地區(昆明地區以外的數據已剔除),故地標中的測強曲線僅適用于昆明地區,昆明地區的實際工程項目既可以采用行標中的全國統一測強曲線計算泵送混凝土強度推定值,也可采用地標中的測強曲線計算泵送混凝土強度推定值。
行標的相關條文說明中提及了全國各地區可根據各地的氣候、原材料等特點建立自己的測強曲線或專用曲線。地標已經經云南省住房和城鄉建設廳批準,并于 2014 年 1 月 1 日開始實施。因此,昆明地區的實際工程項目在選取測強曲線時,可優先考慮地標中的測強曲線。除昆明地區以外,云南省其他地區只可采用行標中的全國統一測強曲線計算泵送混凝土抗壓強度推定值。