

數學思想方法是數學學科的精髓,體現與揭示了數學的本質,是數學學習的指導思想和普適方法。數學思想方法教學是把數學知識學習和能力培養有機結合,提高個人思維品質和數學素養的重要途徑。
一、初中數學教學存在的主要問題
數學教學是“應試教育”的“重災區”。素質教育要求數學教育過程應注重數學素質的培養,一是數學的概念、定理、數學思想方法等方面的知識,二是具有用數學的觀點、心態和方法去處理現實世界中問題的意識。但“應試教育”的功利思想,使題海戰術大行其道,造成學生的高度負擔和畏懼心理。
數學教師的專業素養有待提高。教師在數學概念、原理教學中,存在重知識講解和識記、輕知識形成過程中的能力培養的現象,這不但使習得的數學知識孤立、零散,而且不利于良好的數學學習習慣和方法的形成。
學生的數學素養普遍偏低,對數學學習缺乏正確的認識。初中生多數勤奮好學,但注重結果的多,提煉方法的少;注重怎么做的多,反思為什么的少;害怕、甚至厭倦數學的多,喜歡、乃至崇尚數學的少。
二、成因分析
形成上述問題的主要原因,是教師對數學知識、數學問題的認識站位低,只關注具體的知識、具體的題目,未能洞察其中所蘊含的數學思想方法;未思考初中數學中主要的數學思想方法有哪些,數學思想方法的內涵是什么,在教材中如何呈現,如何恰當把握數學思想方法教學的度等問題。
要想改變這一現狀,需從數學的核心問題入手,即加強數學思想方法的教學研究。故而從理論構建和實踐操作層面上確定以下研究目標:①厘清初中數學教學中的主要數學思想方法的內涵及層次;②梳理初中數學教材(北師大版),明確每一節教學內容所蘊含的數學思想方法;③構建初中數學思想方法教學目標管理系統;④形成數學思想方法教學的實施策略。
三、主要措施
(一)界定初中數學的九種主要思想方法及其層次結構
從初中數學教育教學視角,基于適切性、有利性、高頻數原則,確定了初中9種主要數學思想方法:數學模型、轉換與化歸、特殊與一般、數形結合、方程與函數、分類討論、類比、字母表示數、或然與必然。對上述九種主要數學思想方法做簡要的核心概念界定及內涵描述,逐一勾勒出與該數學思想方法有關的思想或方法的上下位層次結構。[1]下面以數學模型思想方法為例進行說明。
數學模型是數學抽象的結果,是對現實原型的概括反映或模擬,是一種符號模型。數學模型思想方法就是指通過數學模型來解決問題的一種思想方法。數學模型思想方法的上位思想是數學抽象思想、符號與變元思想、公理化和結構化思想,方程與函數是其下位思想方法。
采用“數學模型思想方法”而不采用“數學建模思想方法”的表述,是因為前者為廣義的表述,后者為狹義的表述,廣義的表述是很多教師未曾意識到的,如此表述,內涵更豐富、價值更凸顯。廣義的數學模型思想方法可分為三類:概念原理類、數學建模(實際問題)類、已解決問題類。
概念原理類模型是指數學中的每一個概念、原理等都是直接或間接地以各自相應的現實原型為背景抽象出來的。它包括數學的概念、公式、定理、法則、性質等,既蘊含了純數學的關系結構,又能進行數學推演。
數學建模類模型是指用數學的方法解決實際問題,即從實際問題中發現和提出數學問題,構造相應的數學模型,然后運用數學原理進行推演,解決數學問題,進而使實際問題得以解決。初中的數學建模主要包括方程(組)模型、不等式(組)模型、函數模型、概率模型。
已解決問題類模型是指某些典型問題已被解決,而該問題的解決有利于其他相關問題的解決,即該問題的結論可用于其他問題的解決,或該問題的解決思路可遷移到其他問題的解決。此時,該問題所體現的數學關系結構即為一個數學模型,待解決問題可通過轉化為該問題,進而得到解決。[2]
(二)構建數學思想方法教學目標管理系統
只有構建數學思想方法教學的目標層次要求,明確提出蘊含了哪些數學思想方法,讓學生掌握到什么層次,才能更好地落實數學思想方法教學,落實課標精神,從根本上提高數學教育教學質量。
沈文選認為,加強數學思想方法教學,應該建立一個目標明確的、可以控制的、符合學生認知規律的教學管理系統,我們稱之為“數學思想方法教學目標管理系統”。它是遵循明確揭示目標、逐步滲透、循環往復、系統體現、螺旋上升的規律,按照如下程序和方法來建立的。[3]
1. 構建數學思想方法的教學目標層次框架
基于課程標準、教材、初中生認知發展規律,以數學思想方法教學目標為主線,將數學思想方法教學的目標分為“滲透→顯化→運用”這三個由低到高的水平層次,并將它與學生學習的主體目標“感受和覺察→領悟和形成→掌握、運用和內化”以及教學內容的認知領域的教學目標“了解→理解→掌握和靈活運用”相對應,并對教學目標層次的關鍵詞“滲透、顯化、運用”和主體目標的關鍵詞“感受、覺察、領悟”等逐一作了作界定性表述,進而形成了數學思想方法教學的目標層次框架,[4]具體見右表。
2. 建立數學思想方法教學目標管理系統
首先,依托教材,以章、節、課時為單位,逐一充分挖掘并表述初中數學教材中蘊含的數學思想方法及其教學目標層次。然后,分別將九種主要數學思想方法與能實現其教學目標的具體數學知識,按教學先后及目標層次為序,整理成一個系統,并添加教學目標控制線,建立“數學思想方法教學目標管理系統”。同時,分析各思想方法在滲透(感受、覺察)、顯化(領悟、形成)、運用(掌握、運用、內化)三個層次發展的脈絡,并給出數學思想方法教學目標分析示例,具體見右圖。
(三)提出“術法道”三重教學主張
學生學習具體的數學知識屬于下位學習,而學習數學思想方法則屬于上位學習,當學生掌握了數學思想方法之后,就有助于學生更好地理解相關的具體知識點,從根本上解決數學問題。數學知識的學習和數學問題的解決,可分為“術、法、道”三個層次。
“術”是指解決某一具體問題的方法,如該問題的技巧性解決,該解法不具備可推廣性;或者用了通法解決,卻未能及時提煉。在教學中常體現為“就題解題”“一題多解”。“法”是指一類問題的解法,它具有程序化、易操作的特點,是一類問題解決的通法。在教學中常體現為“歸納總結”“多題一解”,如待定系數法。“道”是指幾類問題的策略性解決,通過深入探究問題的結構特征,對問題解決做方向性、策略性思考,它具有高度的概括性和預測性特點。在教學中常體現為“數學思想方法”“多解歸一”,如數學建模、轉換與化歸、數形結合等思想方法。
由此,運用數學思想方法教學,有助于學生從“道”的層面認識和解決數學問題。[5]
(四)形成數學思想方法教學的實施策略
1. 在知識形成過程中滲透數學思想方法
概念教學中不簡單地下定義。概念是數學知識的起點,不僅要重視概念的內涵,更要重視概念的形成過程,教學中引導學生感受或領悟隱含其中的數學思想方法。
原理教學中不過早給結論。教學中要引導學生參與結論的探索、發現、推導的過程,弄清每個結論的因果關系,讓學生體會探究和發現活動中所經歷和運用的數學思想方法。
2. 在問題的解決中激活和運用數學思想方法
要提高學生的解題能力,應充分展現學生的思維過程,充分發揮數學思想方法對發現解題路徑的定向、聯想和判斷功能。在數學問題的解決后反思和提煉數學思想方法,不僅可以加快和優化問題解決的過程,還可以達到“會一題、明一路、通一類”的效果。
3. 在小結反思中概括數學思想方法
概括數學思想方法一般可分兩步進行:揭示數學思想方法的名稱和內涵;明確數學思想方法與具體知識的聯系,使用方式和范圍,并適時推廣聯系。
參考文獻:
[1]董磊. 初中數學思想方法教學的理論思考之一——初中數學主要思想方法的內涵及層次結構[J]. 中學數學教學參考(中旬),2018(9):67-70.
[2]王秀秀,董磊,陳棉駒. 初中數學模型思想方法的內涵及教學分析[J]. 中學數學教學參考(中旬),2019(4):62-65.
[3]沈文選. 中學數學思想方法[M]. 長沙:湖南師范大學出版社,1999.
[4]董磊. 初中數學思想方法教學的理論思考之三——嘗試構建數學思想方法教學的目標層次框架[J]. 中學數學教學參考(中旬),2018(11):63-65.
[5]董磊. 初中數學思想方法教學的理論思考之二——數學思想方法的價值和意義[J]. 中學數學教學參考(中旬),2018(10):46-48.
注:本文系廣東省教育科學“十二五”規劃課題“如何在初中數學教學中滲透數學思想方法的實踐研究”(課題批準號:2011TJK014)的研究成果。