吳才聰,王東旭,陳智博,宋兵兵,楊麗麗,楊衛中
SF2104拖拉機自主行駛與作業控制方法
吳才聰1,2,王東旭1,陳智博1,宋兵兵1,楊麗麗1,楊衛中1※
(1. 中國農業大學信息與電氣工程學院,北京 100083;2. 農業農村部農業信息獲取技術重點實驗室,北京 100083)
針對農業機械無人化作業的應用需求,該研究基于SF2104動力換向線控底盤拖拉機和全球衛星導航系統(Global Navigation Satellite System,GNSS),研發了拖拉機自主行駛與作業控制系統。該系統針對田內直線作業與地頭轉彎,采用分層控制思想,將控制系統劃分為規劃層、控制層和執行層。規劃層生成U形轉彎所需的路網數據,控制層進行拖拉機橫向控制、速度控制、轉彎控制、機具升降控制、當前路徑更新及終止作業等行為決策;執行層負責以上行為的配置執行。拖拉機掛載深松機進行深松作業,并與有人駕駛深松作業進行對照。結果表明,拖拉機自主行駛與作業控制系統橫向偏差的平均標準差為4 cm,平均作業速度及其平均標準差分別為1.66和0.09 m/s,穩定作業時發動機轉速的平均標準差為7.9 r/min,平均機具位置的極差為23.8,均優于有人駕駛。該研究初步實現了拖拉機的自主行駛與作業,有助于解決農村勞動力緊缺問題。
農業機械;試驗;自動駕駛;自主作業;控制系統
中國農業勞動力數量不斷減少,用工成本日益增長?!耙蝗硕鄼C”作業模式可有效減少駕駛員數量,具有良好的經濟效益[1-4],而線控底盤和自動導航技術為該模式提供了基礎支撐[5-8]。“一人多機”首先要求實現單機的無人駕駛[9],但由于感知與避障等技術尚未成熟[10-12],研發基于近距離人工遙控的單機自主作業控制技術是當前的重點。在該領域,國內外學者以無人駕駛與自主作業為目標開展了系列研究,取得了一定的進展。
Zhang等[13-16]基于傳統拖拉機,利用GNSS(Global Navigation Satellite System)、慣性導航、激光雷達等研發的自動化拖拉機,可初步實現道路行駛和田內作業的無人操作。凱斯紐荷蘭研發的無駕駛室Magnum和有駕駛室NHDriveTM等無人駕駛概念車輛配備了感應和探測裝置,能夠感知并避開障礙物[17-18]。近年來,國內有關機構基于PZ-60型水稻插秧機[19-20],利用工況狀態邏輯控制等方法進行行駛機構和插植機構的聯合控制,實現了準無人駕駛作業,插秧機未配置感知系統,由操作員監視作業環境和緊急制動;這種作業模式將單機所需的勞動力從3人減至1人,有效節約了用工成本,在黑龍江等地得到了應用推廣。為減少施藥過程中對人的危害,劉兆朋等[21]基于ZP9500高地隙噴霧機,利用查詢表方法進行直線跟蹤、地頭轉彎和噴霧作業的自動控制,初步實現了自主噴霧作業。陳黎卿等[22]基于純電動型噴霧機,設計了信息采集與通信系統,實現了噴霧機的自主行駛與作業控制。李云伍等[23]基于丘陵山地電動轉運車,基于GNSS、視覺傳感器及毫米波雷達,實現了轉運車的自主行駛。
農機自主作業還需做好地頭轉彎的路徑規劃和跟蹤,其核心在于選擇轉彎模式和平滑轉彎路徑。Sabelhaus等[24-25]基于Dubins曲線和Reeds-Shepp曲線,設計了連續曲率掉頭路徑生成算法,并分析了Ω式、自相交式和魚尾式轉彎的特點及其時間特性。Paraforos等[26]為了找出最佳的跳過路徑數,針對歷史作業數據,設計了轉彎方式自動判別方法及轉彎時間自動分析方法,通過對800 hm2地塊連續4 a的數據分析,得出了最佳跳過路徑數為3條的結論。Yin等[27]針對SPV-6C插秧機作業路徑規劃與跟蹤控制系統,基于平滑最小轉向圓完成了小幅寬相鄰路徑地頭轉彎,實現了插秧機轉彎的自動化。Cariou等[28-29]以移動機器人小車為平臺,針對相鄰路徑掉頭問題,通過基于基本圖元的軌跡規劃和基于輪胎側偏角監督估計的模型預測,優化了掉頭時間和掉頭區面積。
綜上可知,農機無人駕駛與自主作業的研究尚處于起步階段。本文擬基于SF2104動力換向線控底盤拖拉機和GNSS,開發拖拉機自主行駛與作業控制系統,并通過深松作業驗證其性能。
拖拉機自主行駛與作業機組的組成如圖1,主要包括拖拉機、深松機、導航系統、車載控制器和監控終端。

A.WAS-3106角度傳感器 B.電動方向盤 C.ZC30基準站 D.SF9507車載控制器 E.ZC200天線控制器一體機 F.深松機
拖拉機型號為SF2104,后輪驅動,阿克曼轉向,支持SAE J1939協議。軸距為2 894 mm,輪距為1 750 mm,轉彎半徑為7 150 mm,標定轉速為2 200 r/min,標定功率為154 kW。深松機型號為1SZ-230,幅寬為2.5 m,深松鏟數量為4鏟。導航系統型號為FARMSTAR F2BD-2.5RD,包括電動方向盤(MDU180)、角度傳感器(WAS-3106)、天線控制器一體機(ZC200)等。車載控制器型號為SF9507,輸入/輸出通道總計24路,可通過控制局域網(Controller Area Network,CAN)控制發動機、變速箱及液壓提升系統。監控終端采用手機或電腦,4G通信,可實現拖拉機的遠程啟停及數據可視化。
1.2.1 系統組成
控制系統的結構見圖2,包括數據獲取單元、規劃控制單元及動作執行單元。

圖2 控制系統結構
數據獲取單元通過ZC200內置的GNSS天線和陀螺儀獲取拖拉機的實時坐標與航向;通過角度傳感器獲取拖拉機前輪(轉向輪)的實時角度。GNSS基準站為ZC200播發差分改正數,實現厘米級定位。
規劃控制單元為ZC200內置的導航控制器,是實現導航與控制的核心部件。該單元通過標準串口與電動方向盤進行通信,通過CAN與車載控制器進行通信。
動作執行單元接收控制單元指令并執行相應動作。電動方向盤負責控制前輪轉動,車載控制器通過CAN控制發動機轉速、變速箱擋位和懸掛裝置位置。
1.2.2 導航與控制方法
導航與控制的數據流圖如圖3,數據來自用戶輸入和實時獲取。導航控制器按分層思想設計,包括導航規劃層、行為控制層和行為執行層。
至于灌區內部、城鎮內部的水權分配采用何種方式,可以交由各地自行探索、自主選擇?;蛟S可以采用灌區用水協會集體所有的形式,也可能在灌區內部采用進一步分解到農戶的形式。在城鎮內部,水權或許可以屬于城鎮政府,而委托給供水公司和自供水單位使用。

圖3 導航與控制數據流圖
導航規劃層:有研究表明[25],一般情況下,單弧轉彎時間最短。為此,本文的路徑規劃算法采用FSP(First Turn Skip Pattern)[30],該模式將農田劃分為多個標準區塊和1個剩余區塊,可進行單弧轉彎及套行作業。該算法通過迭代生成路徑編號,見式(1)。

式中q表示第個區塊內的第個順序號的路徑編號;為跳過路徑數。
考慮到拖拉機最小轉彎半徑,單弧轉彎跳過的路徑數按式(2)計算。

式中為作業幅寬,m;為最小轉彎半徑,m。
導航規劃的最終輸出為路網數據S,形式如式(3)。

式中A、B為序號為的作業路徑的起點和終點坐標(坐標系為WGS84),包含經度和緯度2個參數;為該區塊最后一條作業路徑的序號。


式中d為相對于11的延展方向,向右側延展時d=1,向左側延展時d=-1。
考慮到序號有奇偶之分,A和B的計算見式(5)。
然后,將生成的A和B的UTM坐標轉換為WGS84坐標。經以上步驟,便可獲得最終的導航路徑,即路網數據,規劃結果如圖4。
注:No.表示該路徑的路徑編號為,=1,2,3,…;i表示該路徑的作業順序號為,=1,2,3,…;A和B表示作業順序號為的路徑的起點和終點坐標。下同。
Note: No.indicates that the No. of the path is=1,2,3,…;iindicates that the operation sequence No. of the path is,=1,2,3,…;AandBindicate the start and end coordinates of the path with operation sequence No.. The same as below.
圖4 路徑規劃結果
Fig.4 Result of route planning
行為控制層:行為控制層輸入為S和拖拉機實時位置now,輸出為執行層的目標行為,即target,該行為的分類見表1。

表 1 目標行為分類
target的選擇與now有關,見式(6)。

式中為拖拉機實時位置與作業路徑起終點間距的判斷閾值,綜合考慮定位精度與跟蹤精度,本文取0.1 m。
行為執行層:橫向控制由農機自動導航系統實現,其算法業已成熟。當OP∈target時,直線跟蹤行為線程啟動,并向該模塊傳遞now和now的坐標,該模塊將基于軸距ab和拖拉機位置now動態調整目標前輪轉角,最終將該值通過標準串口傳遞給電動方向盤執行。
速度控制通過調節發動機轉速target實現,由車載控制器通過CAN傳遞給發動機。為滿足深松作業的農藝和轉彎要求,設置高轉速狀態up和低轉速狀態down,分別對應升速與降速行為,target滿足式(7)。

機具升降包括機具提升和機具降落,定義開關量target,滿足式(8),即當target為1時機具提升,當target為2時機具降落。

對于深松作業,機具降落點down和機具上升點up需要在作業前完成配置,均由無量綱的機具位置表示,范圍為[0, 1 000],其中,0表示最低位置,1 000表示最高位置。導航控制器將以上參數通過CAN總線發送至車載控制器,由車載控制器控制電液提升系統。
地頭轉彎采用單弧轉彎(圖5),此時的目標前輪轉角為定值??紤]對行與轉向要求,應滿足式(9)。

式中ab為軸距,m;為轉彎距離,m。
注:為目標前輪轉角,(°);ab為軸距,m;為轉彎距離,m。
Note:is the target front wheel turning angle, (°);abis the wheelbase, m;is the turning distance, m.
圖5 轉向示意圖
Fig.5 Diagram of turning
為驗證自主行駛與作業系統的精度與穩定性,本文設計自動駕駛組和有人駕駛組開展對比試驗。試驗地塊位于北京市順義區(40°12'48.32"N,116°33'13.43"E),南北長約90 m,東西寬約35 m。
對于自動駕駛組,將=7.15及=2.5代入式(2)可得為6;由于地塊限制,設置作業路徑數為10條,速度控制和升降控制參數見表2。有人駕駛組由機手自行操作,實際作業路徑數為11條。

表2 速度和升降控制參數
自動駕駛和有人駕駛的行駛軌跡如圖6。直觀來看,在直線作業段,自動駕駛的行駛軌跡更平直;在地頭轉彎段,自動駕駛只存在前進軌跡,且軌跡均為U形,而有人駕駛存在部分倒車軌跡。

圖6 行駛軌跡對比
在作業階段,自動駕駛和有人駕駛的拖拉機橫向偏差的平均標準差分別為4和8 cm。其中,圖7所示為第1和第5條作業路徑的橫向控制偏差。顯然,自動駕駛的拖拉機橫向偏差標準差降低了50%,作業性能更穩定。

圖7 第1和第5條作業路徑的橫向控制偏差
自動駕駛和有人駕駛的平均作業速度分別為1.66和2.98 m/s,平均標準差分別為0.09和0.27 m/s。自動駕駛的控制誤差降低了約67%,表明自動駕駛的作業速度更為平穩(圖8)。

圖8 拖拉機作業速度對比
圖9為拖拉機的發動機轉速對比。自動駕駛的發動機轉速有2個穩定點,作業階段穩定在1 500 r/min附近,轉彎階段穩定在1 000 r/min附近,與設定值一致,僅在直線作業開始或結束時出現超調現象,而有人駕駛的發動機轉速沒有出現穩定點,自動駕駛在作業階段(以130~300 s為例)和掉頭階段(以335~425 s為例)的發動機轉速的標準差分別為7.9和9.1 r/min,拖拉機動力控制性能更優。

圖9 拖拉機發動機轉速對比
圖10為機具位置對比。對前4個穩定作業階段(自動駕駛:130~300 s、450~500s、675~725 s、690~740 s;有人駕駛:20~130 s、205~300 s、405~535 s、720~800 s)的機具升降情況進行分析,自動駕駛平均機具位置的極差為23.8,有人駕駛平均機具位置的極差為113.3。較小的極差反映了自動駕駛的機具升降控制更為精確。

圖10 機具位置對比
1)基于SF2104動力換向拖拉機、GNSS農機自動導航系統和深松機,設計了自主行駛與作業控制系統。采用分層控制思想,將控制系統劃分為規劃層、控制層和執行層。規劃層生成路網數據,控制層進行橫向控制、速度控制、轉彎控制和機具升降控制等行為決策,執行層負責配置執行。
2)田間對照試驗表明,自動駕駛和有人駕駛的橫向偏差的平均標準差分別為4和8 cm,作業速度的平均標準差分別為0.09和0.27 m/s。自動駕駛穩定作業時發動機轉速的平均標準差為7.9 r/min,平均機具位置極差23.8,均優于有人駕駛作業的對應指標,說明自主作業控制技術具有較高的作業精度和穩定性。
[1]Lowenberg-DeBoer James, Huang Iona Yuelu, Grigoriadis Vasileios, et al. Economics of robots and automation in field crop production[J]. Precision Agriculture, 2020, 21(2): 278-299.
[2]Pedersen S?ren Marcus, Fountas Spyros, S?rensen Claus G, et al. Robotic seeding: Economic perspectives[M]. Precision Agriculture: Technology and Economic Perspectives. Springer, 2017: 167-179.
[3]Marinoudi Vasso, S?rensen Claus, Pearson Simon, et al. Robotics and labour in agriculture: A context consideration[J]. Biosystems Engineering, 2019, 184: 111-121.
[4]Duckett Tom, Pearson Simon, Blackmore Simon, et al. Agricultural robotics: The future of robotic agriculture[EB/OL]. 2018-08-02 https://arxiv.org/ftp/arxiv/ papers/1806/1806.06762.pdf.
[5]韓樹豐,何勇,方慧. 農機自動導航及無人駕駛車輛的發展綜述[J]. 浙江大學學報:農業與生命科學版,2018,44(4):381-391. Han Shufeng, He Yong, Fang Hui. Recent development in automatic guidance and autonomous vehicle for agriculture: A review[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2018, 44(4): 381-391. (in Chinese with English abstract)
[6]董勝,袁朝輝,谷超,等. 基于多學科技術融合的智能農機控制平臺研究綜述[J]. 農業工程學報,2017,33(8):1-11. Dong Sheng, Yuan Chaohui, Gu Chao, et al. Research on intelligent agricultural machinery control platform based on multi-discipline technology integration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 1-11. (in Chinese with English abstract)
[7]張漫,季宇寒,李世超,等. 農業機械導航技術研究進展[J]. 農業機械學報,2020,51(4):1-18. Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology[J]. Transactions of Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. (in Chinese with English abstract)
[8]Kelc Damijan, Stajnko Denis, Berk Peter, et al. Reduction of environmental pollution by using RTK-navigation in soil cultivation[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(5): 173-178.
[9]劉小偉,吳才聰,車宇. 無人化農機技術與裝備發展趨勢[J]. 農機科技推廣,2019(10):26-27. Liu Xiaowei, Wu Caicong, Che Yu. Development trend of unmanned agricultural machinery technology and equipment[J]. Agriculture Machinery Technology Extension, 2019(10): 26-27. (in Chinese with English abstract)
[10]何勇,蔣浩,方慧,等. 車輛智能障礙物檢測方法及其農業應用研究進展[J]. 農業工程學報,2018,34(9):21-32. He Yong, Jiang Hao, Fang Hui, et al. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 21-32. (in Chinese with English abstract)
[11]薛金林,閆嘉,范博文. 多類農田障礙物卷積神經網絡分類識別方法[J]. 農業機械學報,2018,49(S1):35-41. Xue Jinlin, Yan Jia, Fan Bowen. Classification and identification method of multiple kinds of farm obstacles based on convolutional neural network[J]. Transactions of Chinese Society for Agricultural Machinery, 2018, 49(S1): 35-41. (in Chinese with English abstract)
[12]薛金林,董淑嫻,范博文. 基于信息融合的農業自主車輛障礙物檢測方法[J]. 農業機械學報,2018,49(S1):29-34. Xue Jinlin, Dong Shuxian, Fan Bowen. Detection of obstacles based on information fusion for autonomous agricultural vehicles[J]. Transactions of Chinese Society for Agricultural Machinery, 2018, 49(S1): 29-34. (in Chinese with English abstract)
[13]Zhang Chi, Noguchi Noboru, Yang Liangliang. Leader–follower system using two robot tractors to improve work efficiency[J]. Computers and Electronics in Agriculture, 2016, 121: 269-281.
[14]Zhang Chi, Noguchi Noboru. Development of a multi-robot tractor system for agriculture field work[J]. Computers and Electronics in Agriculture, 2017, 142: 79-90.
[15]Wang Hao, Noguchi Noboru. Autonomous maneuvers of a robotic tractor for farming[C]// 2016 IEEE/SICE International Symposium on System Integration (SII). Sapporo, Japan: IEEE, 2016. 592-597.
[16]Wang Hao, Noguchi Noboru. Adaptive turning control for an agricultural robot tractor[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 113-119.
[17]關群. 凱斯紐荷蘭工業集團推出無人駕駛概念拖拉機[J]. 農業機械,2016(9):40-43. Guan Qun. Case New Holland Industries launches driverless concept tractor[J]. Farm Machinery, 2016(9): 40-43. (in Chinese with English abstract)
[18]關群. 凱斯無人駕駛概念拖拉機榮獲“最佳設計獎”[J]. 農業機械,2018(1):64. Guan Qun. Case driverless concept tractor won the “Best Design Award”[J]. Farm Machinery, 2018(1): 64. (in Chinese with English abstract)
[19]何杰,朱金光,羅錫文,等. 電動方向盤插秧機轉向控制系統設計[J]. 農業工程學報,2019,35(6):10-17. He Jie, Zhu Jinguang, Luo Xiwen, et al. Design of steering control system for rice transplanter equipped with steering wheel-like motor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 10-17. (in Chinese with English abstract)
[20]何杰,朱金光,張智剛,等. 水稻插秧機自動作業系統設計與試驗[J]. 農業機械學報,2019,50(3):17-24. He Jie, Zhu Jinguang, Zhang Zhigang, et al. Design and experiment of automatic operation system for rice transplanter[J]. Transactions of Chinese Society for Agricultural Machinery, 2019, 50(3): 17-24. (in Chinese with English abstract)
[21]劉兆朋,張智剛,羅錫文,等. 雷沃ZP9500高地隙噴霧機的GNSS自動導航作業系統設計[J]. 農業工程學報,2018,34(1):15-21. Liu Zhaopeng, Zhang Zhigang, Luo Xiwen, et al. Design of automatic navigation operation system for Lovol ZP9500 high clearance boom sprayer based on GNSS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 15-21. (in Chinese with English abstract)
[22]陳黎卿,許澤鎮,解彬彬,等. 無人駕駛噴霧機電控系統設計與試驗[J]. 農業機械學報,2019,50(1):122-128. Chen Liqing, Xu Zezhen, Xie Binbin, et al. Design and test of electronic control system for unmanned drive sprayer[J]. Transactions of Chinese Society for Agricultural Machinery, 2019, 50(1): 122-128. (in Chinese with English abstract)
[23]李云伍,徐俊杰,王銘楓,等. 丘陵山區田間道路自主行駛轉運車及其視覺導航系統研制[J]. 農業工程學報,2019,35(1):52-61. Li Yunwu, Xu Junjie, Wang Mingfeng, et al. Development of autonomous driving transfer trolley on field roads and its visual navigation system for hilly areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 52-61. (in Chinese with English abstract)
[24]Sabelhaus Dennis, Frank Roben, Lars Peter Meyer zu Helligen, et al. Using continuous-curvature paths to generate feasible headland turn manoeuvres[J]. Biosystems Engineering, 2013, 116(4): 399-409.
[25]Backman Juha, Piirainen Pyry, Oksanen Timo. Smooth turning path generation for agricultural vehicles in headlands[J]. Biosystems Engineering, 2015, 139: 76-86.
[26]Paraforos Dimitrios S, Hübner Robert, Griepentrog Hans W. Automatic determination of headland turning from auto-steering position data for minimising the infield non-working time[J]. Computers and Electronics in Agriculture, 2018, 152: 393-400.
[27]Yin Xiang, Du Juan, Noguchi Noboru, et al. Development of autonomous navigation system for rice transplanter[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 89-94.
[28]Cariou Christophe, Lenain Roland, Thuilot Benoit, et al. Motion planner and lateral-longitudinal controllers for autonomous maneuvers of a farm vehicle in headland[C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA: IEEE, 2009. 5782-5787
[29]Cariou Christophe, Lenain Roland, Berducat Michel, et al. Autonomous maneuver of a farm vehicle with a trailed implement: motion planner and lateral-longitudinal controllers[C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA: IEEE, 2010. 3819-3824
[30]Zhou Kun. Simulation Modelling for In-field Planning of Sequential Machinery Operations in Cropping Systems[D]. Aarhus: Aarhus University, 2015.
Autonomous driving and operation control method for SF2104 tractors
Wu Caicong1,2, Wang Dongxu1, Chen Zhibo1, Song Bingbing1, Yang Lili1, Yang Weizhong1※
(1,,100083,; 2,,100083,)
To solve the critical shortage and the increasing cost of rural labor, the concept of “one person, multiple machines” were proposed and an autonomous driving and operating system for SF2104 was developed. The hardware of the system included SF2104 tractor with a power reverser transmission and wire-controlled chassis, WAS-3106 angle sensor, 1SZ-230 subsoiler, GNSS (Global Navigation Satellite System) based auto-steering system for agricultural machinery (FARMSTARF2BD-2.5RD), SF9507 vehicle controller, and mobile monitor such as smartphone and PC (personal computer). The control system mainly included three function units, i.e., data acquisition unit, planning and control unit, and movement unit. The navigation and control method was deployed in the planning and control unit according to the hierarchical control method. The entire method constituted of the layer of navigation planning, the layer of behavior control, and the layer of behavior execution. The operation width, the turning radius and the first operation path (straight line) from user inputs were transferred to the layer of navigation planning, and it also used to calculate the path network data. The path network data, wheelbase from user inputs and the real-time data (i.e.,location, heading and front wheel angle), were transferred to the layer of behavior control involving the target behavior decision. The decision of the target behavior wouldl be transferred to the layer of behavior execution, which derived the target front wheel angle, the target engine rotation speed and the target implement position. The layer of navigation planning generated the path network data to meet the requirement of operating in the field and turning in the headland through the FSP (First Turn Skip Pattern). The layer of behavior control made the decisions of target behavior, including lateral control, speed control, turning control, lifting control, current path update and operation ending. When the tractor entered the operating strip, the system identified the starting point of the operation, and sequentially executed the behavior of implement lowering, the behavior of speed increase, and the behavior of tracking thestraight line. When the tractor finished the operation of the current path, the behaviors of implement lifting, speed reduction, and turning were executed sequentially. The behavior of speed control was executed by controlling the tractor’s engine rotation speed at a high value or a low value through the vehicle controller. The behavior of lifting control was executed by transmitting an implement status value to the controller of the hydraulic lifting system. The behavior of turning control was executed by transmitting a fixed front wheel angle which was calculated by tractor kinematics turning distance. The subsoil operation experiments were carried out in the Shunyi District of Beijing. The experiments included the manual driving group and the autonomous driving group. For the autonomous driving group, the operating trajectories were straight and smooth, the average standard deviation of lateral deviation was 4 cm, the average operating speed was 1.66 m/s, and the standard deviation of operating speed was 0.09 m/s. During the stable operating stage in the field, the standard deviation of engine rotation speed was 7.9 r/min, and the range of the average implement position was 23.8. For themanual driving group, the operating trajectories were not smoother than the trajectories of the autonomous driving group, and the average standard deviation of lateral deviation was 8 cm, the average operating speed was 2.98 m/s, and the standard deviation of operating speed was 0.27 m/s. The stability of engine rotation speed and the range of implement position were also poor in manual driving group. The results showed that the autonomous driving group outperformed the manual driving group in terms of operating accuracy and working stability, which can effectively reduce labor costs. This research provides a platform foundation and theoretical basis for the future research of multi-vehicle and multi-operation collaboration with less human operations.
agricultural machinery; experiments; automatic driving; autonomous operation; control system
吳才聰,王東旭,陳智博,等. SF2104拖拉機自主行駛與作業控制方法[J]. 農業工程學報,2020,36(18):42-48.doi:10.11975/j.issn.1002-6819.2020.18.006 http://www.tcsae.org
Wu Caicong, Wang Dongxu, Chen Zhibo, et al. Autonomous driving and operation control method for SF2104 tractors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 42-48. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.006 http://www.tcsae.org
2020-06-03
2020-08-01
國家重點研發計劃項目(2016YFB0501805)
吳才聰,博士,副教授,博士生導師,主要從事農機導航與位置服務等研究。Email:wucc@cau.edu.cn
楊衛中,博士,副教授,主要從事農機導航與位置服務等研究。Email:ywz@cau.edu.cn
10.11975/j.issn.1002-6819.2020.18.006
S24
A
1002-6819(2020)-18-0042-07