王峰,王秀杰,趙勝男,閆家榕,卜鑫,張穎,劉玉鳳,許濤,齊明芳,齊紅巖,李天來
光對園藝植物花青素生物合成的調控作用
王峰,王秀杰,趙勝男,閆家榕,卜鑫,張穎,劉玉鳳,許濤,齊明芳,齊紅巖,李天來
(沈陽農業大學園藝學院/設施園藝省部共建教育部重點實驗室/北方園藝設施設計與應用技術國家地方聯合工程研究中心(遼寧),沈陽 110866)
花青素是植物中一類重要的類黃酮化合物,在植物花朵、果實等器官色澤形成和抗氧化過程中起著重要作用。植物組織中花青素的形成依賴于光信號,但是光信號對花青素生物合成的調控機制及信號網絡很大程度上還不清晰。本文簡述了花青素生物合成及運轉過程的研究進展,簡要歸納了MYB、bHLH、WDR三類主要因子對花青素合成的轉錄調控作用,重點闡釋光信號(光強、光質、光照時長)對植物花青素合成的調控作用。研究表明,光環境(光強、光質、光照時長)主要通過不同的光受體(UVR8、CRYs、PHOTs、PHYs)影響光信號通路重要因子COP1的泛素化能力和HY5的穩定性,以及其他光信號轉錄因子如光敏色素互作因子PIFs的穩定性,進而調控花青素的生物合成過程。這些光信號因子一方面直接結合到調控花青素合成的MYB、bHLH、WDR三大類轉錄因子上,轉錄激活或抑制它們的表達進而調控花青素的合成;另一方面,這些光信號因子通過與MYB、bHLH、WDR三大類轉錄因子蛋白互作,影響它們形成的MBW復合體穩定性,進而調控花青素的合成。此外,這些光信號因子還可以通過不依賴于MBW復合體的通路調控花青素的合成,如HY5通過調控影響花青素的生物合成;另外,一些未知的光響應因子可能以不依賴MBW通路的方式直接或間接地調控花青素合成基因和液泡膜上的運轉蛋白,改變液泡酸化,調節花青素的合成。同時,光信號會影響光合電子傳遞,光合電子傳遞鏈中的一些因子也會通過依賴和不依賴MBW的途徑影響植物花青素的合成。這些途徑如何協調以及哪些信號因子優先受光環境(光強、光質、光照時間)調控?本文為深入研究光信號對花青素生物合成的調控機理提供參考,以探索光調控花青素積累的有效途徑及靶標分子,為利用基因工程、代謝工程和光環境調控手段改良園藝植物花青素積累提供理論基礎。
光;花青素;轉錄因子;轉錄調控;園藝植物
花青素是自然界中廣泛存在于植物中的水溶性天然色素,在植物的花、葉片和果實等器官中均有積累。花青素可以通過其艷麗的色彩幫助植物吸引昆蟲和飛鳥等媒介,幫助植物傳粉和散播種子。另外,花青素具有較強的抗氧化能力,可以減輕植物組織免受活性氧(ROS)等脅迫的傷害,同時,在抗衰老[1]及防治心血管疾病[2]等方面對人體也有保健功效。光環境作為影響植物花青素合成的重要環境因子,受到越來越多的關注,解析光對花青素生物合成的調控作用,對精準調控園藝植物不同器官花青素的含量、提高園藝產品營養成分及人體保健等方面具有重要的研究和應用價值。
花青素生物合成途徑是植物類黃酮途徑的一個分支途徑,主要在內質網表面進行。一般來說,花青素由3個丙二酰輔酶A分子和一個4-香豆酰輔酶A分子在細胞質中結合,經由查爾酮合酶(CHS)作用產生查爾酮(圖1)。查爾酮經查爾酮異構酶(CHI)催化形成黃烷酮柚皮素,黃烷酮-3-羥化酶(F3H)催化黃烷酮柚皮素形成二氫黃酮醇(DHK)。DHK一方面直接被二氫黃酮醇還原酶(DFR)催化形成無色天竺葵素;另一方面,DHK經由二氫黃酮醇-3′-羥化酶(F3′H)作用形成二氫槲皮素(DHQ),DHQ和DHK在二氫黃酮醇-3′, 5′-羥化酶(F3′5′H)作用下形成二氫楊梅素(DHM)。DHQ和DHM被DFR催化后分別形成無色矢車菊素和無色飛燕草素。3種無色花青素在花青素合成酶(ANS)催化下形成天竺葵素、矢車菊素和飛燕草素。不穩定的花青素通過類黃酮-3-O-葡萄糖基轉移酶(UFGT)催化形成穩定的花青苷。矢車菊素苷經由甲基轉移酶(OMT)催化形成芍藥花苷,飛燕草素苷經由OMT催化形成牽牛花素苷和錦葵素苷(圖1)。
花青素苷合成后需要在轉運蛋白和轉運囊泡的協助下有效地向液泡中轉運并貯藏(圖1),從而防止花青素苷自身被氧化變性及對細胞造成毒害。由于花青素苷最終所處的液泡環境會影響花青素苷的呈色,如酸性環境會使其顏色紅移,而堿性環境會使其顏色藍移[3],因此,明確花青素苷的液泡運轉機制極其重要。研究發現,花青素苷液泡轉運的主要方式為:在GST協助下被靶向定位到液泡附近,液泡膜上的MRP類轉運蛋白識別后將其跨膜轉運至液泡[4];由液泡膜上的MATE類轉運蛋白將其跨膜轉運到液泡中,這個過程需要如H+-ATPase和H+-pyrophosphatase(V-PPase)質子泵將質子運輸到液泡中對液泡酸化[5];由囊泡包裹,細胞膜導出的囊泡以膜融合的方式直接將花青素運輸到貯藏液泡中,這個過程不依賴GST和MRP3蛋白的協助[4]。另外,ABC運轉蛋白也參與花青素苷的液泡吸收和外排過程[6]。

CHS:查爾酮合酶Chalcone synthase;CHI:查爾酮異構酶Chalcone isomerase;F3H:黃烷酮-3β-羥化酶Flavanone-3β-hydroxylase;F3′H:二氫黃酮醇-3′-羥化酶Dihydroflavonoid-3'-hydroxylase;F3′5′H:二氫黃酮醇-3′, 5′-羥化酶Dihydroflavonoid-3', 5'-hydroxylase;DFR:二氫黃酮醇還原酶Dihydroflavonol reductase;ANS:花青素合成酶Anthocyanin synthase;UFGT:尿苷二磷酸-葡萄糖-類黃酮-3-葡糖基轉移酶UDP-glucose flavonoid 3-glucosyltransferase;OMT:甲基轉移酶O-methyltransferases;GST:谷胱甘肽轉移酶Glutathione S-transferase;MRP:多藥耐藥相關蛋白Multidrug resistance-associated protein;MATE:多藥和有毒化合物排出家族蛋白Multidrug and toxic compound extrusion;ABC:C型的ATP結合蛋白C type of ATP-binding cassette;AVIs:花青素苷液泡內涵體Anthocyanic vacuolar inclusions;Phenylalanine:苯基丙氨酸;3×Malonyl CoA:3×丙二酰輔酶A;4-Coumaroyl CoA:4-香豆酰輔酶A;Chalcone:查爾酮;Flavanones:黃烷酮;Dihydrokaempferol(DHK):二氫黃烷酮;Dihydroquercetin(DHQ):二氫櫟精;Dihydromyricetin(DHM):二氫楊梅酮;Leucopelargonidin:無色天竺葵素;Leucocyanidin:無色矢車菊素;Leucodelphinidin:無色飛燕草素;Pelargonidin:天竺葵素;Cyanidin:矢車菊素;Delphinidin:飛燕草素;Pelargonidin 3-glucoside:天竺葵素苷;Cyanidin 3-glucoside:矢車菊素苷;Delphinidin 3-glucoside:飛燕草素苷;Peonidin:芍藥花青素苷;Petunidin:牽牛花素苷;Malvidin:錦葵素苷;Anthocyanins:花青素;Cytosolic:細胞質;Endoplasmic reticulum:內質網
花青素生物合成途徑的主要基因在轉錄水平上受多種轉錄因子的調控,主要包括MYB、bHLH和WDR轉錄因子,這3類轉錄因子可以形成MBW復合體[7]。擬南芥中花青素合成基因分為早期合成基因(early biosynthetic genes,EBGs)和后期合成基因(later biosynthetic genes,LBGs),EBGs包括、和′,LBGs包括和[8]。EBGs的表達不受MBW復合物調控,而LBGs的表達受MBW復合物調控[9]。
MYB蛋白家族N端含有可與DNA結合的保守MYB結構域,C端在不同物種間序列變異較大,但常有轉錄激活或抑制結構域的作用[10]。MYB結構域由1–4個R基序(R repeat)組成,根據含有R基序的數量分為1R-MYB、R2R3-MYB、3R-MYB和4R-MYB。其中有2個R基序的R2R3-MYB是最常見的MYB轉錄因子,也是參與調控類黃酮代謝和花青素生物合成的重要轉錄因子。MYB蛋白功能異常或靶基因啟動子上MYB識別序列[MYB-recognizing elements,MRE;識別位點ANCNN(C/A)C]異常,都可能導致花青素的生物合成不正常[11]。
玉米中C1(Colorless-1)是植物中首個被發現的R2R3-MYB轉錄因子,它正調控玉米中和的表達,從而促進玉米花青素的合成[12]。矮牽牛中MYB型轉錄因子PhAN2(anthocyanin 2)的C端具有與玉米C1相似的結構域,與PhAN4均正調控的表達,從而促進矮牽牛花青素的合成[13]。與矮牽牛PhAN2同源的亞洲雜交百合的LhMYB6和LhMYB12同樣可以促進白百合花青素的積累[14]。最近研究發現,野生番茄SlAN2-like轉錄因子可以激活的表達,誘導番茄果皮中花青素的積累[15],但SlAN2-like轉錄激活的會反饋抑制的表達[16];另外,SlAN2-like的選擇性剪切對番茄花青素的積累也有影響[17]。研究發現,擬南芥MYB轉錄因子AtPAP1(production of anthocyanin pigment 1)不僅正調控和等基因的表達,而且促進糖基轉移酶基因和的表達,誘導矢車菊素大量積累[18]。豆科植物紫花苜蓿、蒺藜苜蓿和白三葉中與AtPAP1同源的LAP1(legume anthocyanin production 1)同樣能夠有效地促進矢車菊素積累[19]。蘋果MdMYB10與AtPAP1有較高同源性[20],MdMYB10結合到自身啟動子上游23 bp的串聯重復序列上,激活自身轉錄,進而促進的表達,使蘋果果肉花青素積累,而白色果肉蘋果中啟動子上則缺少這段序列,導致的轉錄水平較低,破壞了花青素的積累[21]。研究發現,MYB10在果實花青素形成中是保守的,草莓[22]、甜櫻桃[23]、油桃[24]和梨[25]等果實花青素形成均與MYB10相關。此外,植物中一些各異的MYB也能夠影響花青素的積累。如擬南芥AtMYB113和AtMYB114[9],龍膽中的GtMYB3[26],菊花中的CmMYB6[27],葡萄中的VvMYBA、VvMYB5a和VvMYB5b[28],蘋果的MdMYB9、MdMYB11和MdMYB110[29-30],以及番茄SlMYB75[31]。
為保證花青素在植物體內的代謝平衡,一些MYB在花青素生物合成中起著負調控因子的作用。如擬南芥AtMYB2負調控、和的表達[32];葡萄VvMYB4-like抑制和的表達[33];蘋果MdMYB6過表達會抑制和等基因的表達[34];智利草莓FcMYB1會抑制的表達[35]。這些抑制型MYB一方面直接轉錄抑制花青素合成途徑相關基因的表達;另一方面通過與調控花青素合成的正調控因子結合,抑制它們的表達或破壞MBW復合體的形成。如具有獨特TLLLFR抑制結構域的AtMYBL2轉錄因子,通過與AtTT8結合進而抑制和的表達[36];AtSPL9(squamosa promoter binding protein-like 9)轉錄因子通過破壞MBW復合體的穩定性抑制的表達[37];葡萄中的VvMYBC2-L1和VvMYBC2-L3與VvAN1結合,破壞MBW復合體的穩定性,抑制花青素的積累[38]。研究發現,矮牽牛PhMYB27一方面通過與PhAN1互作,激活其C末端EAR基序抑制的表達[39];另一方面通過與bHLH型轉錄因子PhJAF13和PhAN11結合互作,破壞MBW復合體形成,使MBW復合物從激活狀態變為抑制狀態,進而抑制花青素合成[40]。AtCPC(CAPRICE)與PhMYB27不同,它是C末端不含抑制基序的R3-MYB,不能直接與MBW復合物結合,而是間接減少MBW復合物的活性,從而抑制花青素的生物合成[41]。
bHLH(basic helix-loop-helix)轉錄因子具有與DNA結合的高度保守的bHLH結構域,這個結構域的N端由13—18個親水氨基酸殘基組成堿性區(basic),負責與DNA接觸,C端為HLH域,主要參與同源或異源二聚體的形成,其中的環狀區(Loop,L)連接著2個螺旋(helix,H)。bHLH轉錄因子決定了MBW復合物識別靶基因啟動子上的轉錄結合位點及激活靶基因轉錄的特異性[42]。研究表明,花青素相關的bHLH對靶基因的有效識別序列(bHLH-recognizing elements,BRE)為CACN(A/C/T)(G/T)[11]。bHLH蛋白功能異常或靶基因啟動子上BRE異常,都可能導致花青素合成異常。
最早發現的一批調控花青素合成的bHLH家族轉錄因子是玉米中的R1、B1、Lc(Leaf color)和Sn[43-44]。ZmLc能夠激活和的表達,促進花青素的生物合成[13]。與玉米同源的擬南芥bHLH轉錄因子為AtTT8(transparent testa 8)、AtGL3(glabra 3)和AtEGL3(enhancer of glabra 3),它們通過調控的表達來促進花青素的生物合成[45]。蒺藜苜蓿MtTT8是與擬南芥AtTT8同源的bHLH型轉錄因子,它能與MtLAP1和MtWD40-1互作形成MBW復合體,促進花青素的合成[46]。研究發現,矮牽牛中PhJAF13和PhAN1是調控花青素生物合成的主要bHLH類調控因子,它們均能與PhAN2互作激活的表達,且PhAN1還可以直接激活的表達[42]。同樣,煙草中的NtAN1a與NtAN2互作激活和的表達[47]。非洲菊bHLH調控因子GMYC1與MYB轉錄因子AN2和GMYB10互作,特異地在花冠和心皮部位促進的表達[48];紫色天葵的bHLH型基因和MYB轉錄因子GbMYB1共同表達能激活和啟動子,誘導花青素合成[49]。另外,蘋果MdbHLH3和MdbHLH33共同與MdMYB10轉錄因子互作,促進果實顏色變紅[20];荔枝LcbHLH1 和LcbHLH3 轉錄因子與LcMYB1共同作用,促進花青素積累[50];龍膽GtbHLH1蛋白能與GtMYB3互作,促進龍膽花瓣花青素合成[26];亞洲百合LhbHLH2能與LhMYB6和LhMYB12相互作用,激活、、的表達促進花青素的合成[14]。以上結果表明,bHLH轉錄因子除了直接調控的表達外,還可以與MYB轉錄因子互作,調控花青素的合成。
WDR(WD40 repeat proteins,WDR)蛋白家族具有保守而特異的二肽重復基序,每個重復的WD基元大概有40—60個氨基酸殘基組成,WDR在蛋白質互作時作為支架起固定作用。矮牽牛的PhAN11是第1個被發現調控花青素生物合成的WDR蛋白,它作用于PhAN2的上游,通過激活的表達調控花青素的合成[51]。擬南芥AtTTG1(transparent testa glabra 1)與矮牽牛PhAN11同源,它一方面與bHLH型轉錄因子AtGL3蛋白互作,直接促進及的表達;另一方面,AtTTG1與AtPAP1及AtGL3/AtEGL3互作,形成MYB/bHLH/TTG1轉錄復合體,進而調控花青素的生物合成[9]。玉米中約有20個基因影響其花青素的產生,其中ZmPAC1(pale aleurone color 1)是類似于矮牽牛PhAN11和擬南芥AtTTGl的WDR蛋白,的缺失導致花青素含量降低[52]。研究發現,楊梅MrWD40-1與MrMYB1和MrbHLH1相互作用,參與楊梅花青素的積累[53];蘋果MdTTG1與bHLH轉錄因子和MYB 轉錄因子相互作用形成復合物,激活花青素合成基因和的轉錄[54];藍莓WD40轉錄因子VcWDL2與VcMYBL1和VcbHLHL1互作,參與調控藍莓果實花青素的合成[55];此外,辣椒果實中的沉默后,辣椒的花青素含量明顯減少[56]。盡管WDR屬于廣譜性表達蛋白、組織特異性較弱,但其一般無冗余拷貝,所以它的突變會影響MBW復合體的形成或復合體的定位及信號傳遞,最終破壞了MBW復合體對眾多靶基因的表達調控。
除MYB、bHLH和WDR外,miRNA、JAZ蛋白、bZIP蛋白等也參與了植物花青素生物合成的調控。研究發現,miR828/TAS4-siR81(-)能與花青素正調控因子PAP1、PAP2、MYB113結合,抑制它們的表達,進而負調控擬南芥花青素的積累[57]。miR156靶向定位的SPL9轉錄因子可使MBW轉錄復合體變得不穩定,最終負調控擬南芥花青素的生物合成[37]。另外,番茄miR858可以抑制R2R3-MYB的表達,減少花青素的合成[58]。擬南芥茉莉酸信號通路中的AtJAZ蛋白不僅可以與bHLHs(AtGL3、AtEGL3、AtTT8)和R2R3-MYBs(AtPAP1、AtPAP2)蛋白結合,阻礙MBW復合體的形成,抑制花青素的生物合成,而且可以作為正調控因子參與JA誘導的花青素積累[59]。另外,bZIP型轉錄因子,如HY5不僅可以直接調控和等花青素結構基因的表達[60],而且可以結合到、、等轉錄因子啟動子上影響它們的表達,同時還可以通過調控的表達,間接調控花青素相關基因的表達[61-63]。此外,HY5還能與PIF3(phytochrome interacting factor 3)等bHLH蛋白互作,共同調控花青素合成途徑的下游靶基因,從而促進花青素的合成[64]。
光是影響植物花青素合成的最重要環境因子之一。在植物綠色組織或細胞中,光通過光受體及光合電子傳遞調節植物花青素的合成與積累,從而保護植物組織免受活性氧(ROS)等的脅迫及調控植物色澤的形成。因此,本文對光信號調控植物花青素合成及代謝進行總結(圖2),具體內容如下。
強光可以刺激許多植物花青素的形成與積累[65]。番茄()果實暴露在光下部分比遮陰部分的花青素含量高[66];非洲菊花序進行黑暗處理后,其花青素被抑制[67]。主要原因是光可以提高苯丙氨酸解氨酶(PAL)、查耳酮合酶(CHS)、二氫黃酮醇4-還原酶(DFR)、類黃酮葡萄糖苷轉移酶(UFGT)等花青素合成途徑中關鍵合成酶的活性,進而促進花青素的合成和積累。研究發現,強光可以促進花青素生物合成途徑結構基因和調節基因的表達。如強光促進擬南芥花青素合成結構基因、及調節基因的表達,從而促進植物花青素的合成與積累[68]。強光促進矮牽牛和的表達,而弱光或黑暗致使矮牽牛和紫蘇等植物的花青素結構基因表達量下調甚至不表達,使植株出現白花或淺色花[69-70]。草莓果實中和等結構基因及轉錄因子FaMYB10、FaMYB1的表達量會隨著光照強度的降低而降低,弱光會使草莓紅色減弱、花青素含量降低[71]。強光可以誘導番茄和辣椒等植物R2R3-MYB轉錄因子SlAN2和CaMYBa的表達,抑制含抑制基序的矮牽牛的表達,從而促進花青素的積累[39]。另外,強光可以促進番茄SlAN11、SlTT8和SlAN2蛋白結合,形成MBW復合體,進而促進番茄花青素結構基因的表達及花青素的積累,而SlMYBL2則反饋抑制花青素合成基因的表達[72]。強光可以增加蘋果的表達,從而誘導其下游基因的表達,促進果皮中花青素的積累[73]。另外,強光可以通過藍光受體CRY1(crytochrome 1)誘導的表達,進而促進植物花青素的積累[74]。此外,光合電子傳遞可能在植物花青素合成中也起著重要的作用[75],因此,光信號對植物花青素合成的調控是多通路協作的復雜過程。
3.2.1 紫外光(UV)和藍光 在植物花青素合成和積累的過程中,不同光質對植物花青素形成的調控作用不同。對于大多數植物,紫外線(UV)是花朵成色、花青素積累的重要因子[76]。UV按波長由短到長依次分為UV-C、UV-B和UV-A。研究發現,UV-C可以促進紫甘藍花青素酰基轉移酶基因以及R2R3-MYB家族轉錄因子MYB114和PAP1的表達,進而促進花青素合成[77]。另外,UV-C可以提高楊梅果實中的PAL、CHI、4-香豆酰輔酶A連接酶(4CL)和肉桂酸氫化酶(C4H)的活性,從而增加花青素和類黃酮物質的合成與積累[78]。研究發現,一定程度的UV-B可以通過加強藍莓中CHI酶活性提高其花青素的含量[79]。UV-B在植物體內主要通過兩種形式誘導花青素的積累。植物UVR8(UV resistance locus 8)感知UV-B輻射后,由二聚體形式轉化為單體形式[80]。單體形式UVR8和COP1、SPA聚合產生UVR8-SPA- COP1復合物[81],并聚集在細胞核中。這種復合體一方面引起MYB、bHLH和WDR 3種轉錄因子響應,促進MBW復合體形成,直接或間接促進花青素合成途徑中各基因的表達[82]。如UV-B可以誘導萵苣葉片中的表達[83],以及甘藍和的表達[84],這可能與UVR8和MYB13的互作相關[85]。另一方面,UVR8-SPA-COP1復合物可穩定HY5蛋白[86](圖2),HY5轉錄因子可以激活R2R3-MYB轉錄因子,促進植物花青素合成基因的表達,從而誘導花青素的積累[61]。如UV-B下,蘋果中MdHY5與的啟動子結合,激活其轉錄,進而促進蘋果花青素的合成[64]。研究發現,溫室中生長的茄子由于UV照射較少,果實著色不良,當對茄子進行UV-A補光后,茄子顏色加深[87]。研究報道,與白光相比,UV-A可以提高番茄幼苗和果實中花青素的積累[88],同時,UV-A可以誘導蕪菁和的表達[89]。
植物通過隱花色素CRY感受UV-A和藍光[90]。研究發現,擬南芥突變體中表達下調,花青素積累減弱[76]。藍光下,CRY1和CRY2可以與COP1和WD40相互作用,但二者作用機制不同。CRY1與SPA1(suppressor of phyA1)互作,將SPA1與COP1隔離,從而阻礙COP1-SPA1蛋白復合體的形成[91];而CRY2-SPA1互作則增強了CRY2-COP1的互作,CRY1/2-SPA1相互作用均減弱了COP1的E3泛素連接酶活性,從而使COP1下游轉錄因子的蛋白處于穩定狀態[92]。研究發現,CRY1和CRY2可以激活光信號轉錄因子HY5和COL5,進而促進花青素生物合成結構基因及的表達,促進花青素的積累[86]。研究發現,茄子SmCRYs在光下抑制SmCOP1的活性,促使SmHY5和SmMYB1結合到和的啟動子上激活它們的表達,進而促進茄子花青素的積累;而黑暗下,SmCRYs不能抑制SmCOP1的活性,SmHY5和SmMYB1被SmCOP1靶定并通過26S泛素蛋白酶體途徑降解,阻止了依賴SmMYB1激活的花青素合成途徑[93]。最近研究發現,擬南芥轉錄共激活因子AtAN3(angustifolia 3)可以結合到的啟動子上,負調控的表達;缺失后,植物的花青素含量明顯降低[94](圖2),但是否通過光受體影響植物花青素的合成尚不清楚。研究發現,增加藍光的比例可以提高番茄幼苗的花青素含量[95]。藍光促進楊梅果實MrMYB1及花青素合成相關結構基因和的表達,從而促進果實中花青素的合成[96]。櫻桃在藍光和白-藍-綠光的照射下增加了PAL酶的活性,使果實中的花青素含量升高[97]。另外,藍光可以通過PHOT和CRY受體增加草莓中花青素的積累[98-99]。以上結果表明,短波長的UV和藍光可以通過UVR8和CRY,在轉錄和轉錄后方面影響MBW復合體或調控下游光信號轉錄因子的表達,進而影響植物花青素的生物合成,但其作用機制還待進一步深入研究。
3.2.2 紅光和遠紅光 紅光和遠紅光在植物花青素的生物合成中也起著重要作用。研究發現,紅光誘導茄科蔬菜中的表達及覆盆子果實中黃酮類物質的合成,進而促進花青素的合成[100]。另外,高紅光/遠紅光比例下生長的番茄,其花青素正常合成,但低紅光/遠紅光照射下,番茄花青素的合成卻受到嚴重抑制[101-102],這主要是高比例的紅光可以促進DFR酶和花色素雙氧酶(LDOX)活性,進而促進花青素的積累,而遠紅光增多(低比例的紅光/遠紅光)抑制DFR酶和LDOX酶的催化作用[101]。光敏色素是感受紅光和遠紅光的主要光受體。研究發現,紅光受體phyB主要通過兩種方式發揮作用(圖2):紅光使phyB以活性的Pfr形式從細胞質進入細胞核,一方面通過光敏色素-轉錄因子途徑直接調控基因表達;另一方面通過光敏色素-COP1途徑間接調控基因表達[103]。但是遠紅光信號調控花青素合成的機制尚不清楚,因為遠紅光受體光敏色素A(phyA)和紅光受體phyB均能夠抑制COP1的活性,而COP1負調控花青素的合成[104],但增加遠紅光的比例(低紅光/遠紅光比例)卻降低花青素的積累,這可能是由于遠紅光對phyB的鈍化作用大于遠紅光對phyA的激活作用。

UVR8:UV-B光受體;CRYs:隱花色素;PHYs:光敏色素;MBW:MYB-bHLH-WDR構成的復合體;COP1:暗形態建成中的E3泛素連接酶蛋白;HY5:光信號轉錄因子;PIFs:光敏色素互作因子;AN3:花青素合成調控因子;PET:光合電子傳遞;MRE:MYB識別序列;BRE:bHLH識別序列UVR8: UV resistance locus 8; CRYs: crytochrome; PHYs: phytochromes; MBW: MYB-bHLH-WDR complex; COP1: constitutively photomorphogenic 1; HY5: elongated hypocotyl 5; PIFs: phytochrome interacting factors; AN3: ANGUSTIFOLIA3; PET: photosynthetic electron transport; MRE: MYB-recognizing elements; BRE: bHLH-recognizing elements
光周期也會影響植物花青素的生物合成。研究表明,利用補光技術延長光照時間能顯著提高植物花青素的積累[105]。光照可以提高煙草花青素生物合成基因的表達量,增加花青素的合成,而黑暗則作用相反[8]。對蕪菁地下根進行光照處理時,表達量隨著光照時間的延長逐漸增加[106]。另外,延長光照時間顯著增強紫葉李葉片中PAL酶的活性,促進花青素的生物合成,使其葉色變紅[107]。黑暗下植物花青素含量較低可能與COP1有關,因為突變體在黑暗中能產生花青素[104]。黑暗下,COP1在細胞核中大量積累,它可能通過E3泛素途徑將其下游光信號及花青素正調控轉錄因子降解[92]。另外,黑暗中,SPA下調PAP1和PAP2轉錄水平[108]。因此,COP1-SPA復合體是光照或黑暗調控植物花青素生物合成的中心調節因子[104]。然而,并非光照時間越長,花青素積累越多。如亞洲雜交百合‘Vivaldi’在黑暗條件下生長時,花青素含量很低,光照后迅速增加,但光照時間過長后,花青素含量又逐漸降低[14]。因此,明確光照時長對植物花青素積累的影響,對合理利用LED光譜技術調控植物花青素的積累有重要意義。
光環境及光受體(UVR8、CRYs、PHOTs、PHYs)主要通過COP1、HY5、PIFs等光信號因子來調控植物花青素的合成,這些光信號因子一方面直接結合到調控花青素合成的MYB、bHLH、WDR三大類轉錄因子上(圖2),轉錄激活或抑制它們的表達[61-63];另一方面,這些光信號因子通過與MYB、bHLH、WDR三大類轉錄因子蛋白互作,影響它們形成的MBW復合體的穩定性[93,104],進而調控花青素的合成。此外,這些光信號因子還可以通過不依賴MBW的通路調控花青素的合成[64-65],如HY5通過調控影響花青素的合成[58,60];另外,一些未知的光響應因子可能以不依賴MBW通路的方式直接或間接地調控花青素合成基因和液泡膜上的運轉蛋白,改變液泡酸化,調節花青素的合成[5-6]。
花青素既影響植物的色澤,也作為抗氧化物質對人體健康有利,因此,提高園藝作物花青素含量成為改善果實營養的熱點。光強、光質、光照時長等光環境,可以改變園藝植物花青素的含量。如增加光照可以促進蘋果果皮積累花青素,使果皮變紅[109]。番茄()果實暴露在光下部分比遮陰部分的花青素含量高[66]。強光誘導番茄和辣椒的和表達,促進番茄和辣椒花青素的積累[39]。當對茄子進行UV-A補光后,茄子顏色加深[87]。增加光環境中藍光的比例可以促進番茄中花青素的含量[95]。研究表明,光環境的調控是改良園藝作物花青素的重要手段,因此,LED補光技術成為調控園藝作物色澤的關鍵技術。
傳統雜交和誘變為主的育種技術對園藝植物花青素的改良周期長。通過改變調控花青素關鍵基因的表達水平進而改變花青素積累,是花青素生物工程和代謝工程的一個重要策略。如金魚草和轉入番茄后,轉基因番茄的果皮和果肉呈現深紫色,花青素含量遠高于藍莓[110],這樣的番茄對提高人體抗氧化能力等有重要的功效。玫瑰、康乃馨和菊花中過量表達,花朵合成飛燕草素呈現藍紫色,解決了傳統育種技術培育不出富含飛燕草素藍色花朵的難題[111-112]。將轉入煙草中可產生1種具有藥用價值的花青素Cyanidin 3-O-rutinoside,且這種成分占總花青素含量的98%[113]。這一研究使工業上提取大量具有藥用功能的花青素成為可能,同時以煙草作為原料降低了生產成本,極大地促進了花青素代謝工程和生物工程的發展。
近年來,人類比以往更加關注花青素在植物色澤形成、抗氧化、人體保健等方面的作用,而光作為花青素合成的重要因子也受到越來越多的關注。解析光對花青素生物合成的調控網絡對精準調控園藝植物不同器官花青素的含量有重要的生物學意義。盡管人類利用模式植物(矮牽牛和擬南芥)對花青素的生物合成途徑有了較深的理解,并且陸續克隆和鑒定了一些其他物種花青素合成和運轉途徑的基因,但關于光信號對植物花青素生物合成及運轉調控機制的研究才剛剛起步,仍有許多問題值得進一步思考:(1)不同光受體與MBW復合體的互作調控關系尚不清晰。目前除了HY5對花青素積累的調控機制取得一定進展外,與MBW復合體互作的其他光信號因子及其功能的解析,對構建光信號調控花青素的信號網絡意義重大;(2)盡管已經發現了許多調控花青素生物合成的正調控因子,但其負調控因子研究相對較少,尤其是光對這些負調控因子的作用機制嚴重匱乏;(3)甲基化、羥基化、糖基化及酰基化等催化作用對花青素的形成和運輸有重要作用,但光信號是否影響這些修飾過程尚不清楚;(4)園藝植物果實中花青素的積累通常受光照、溫度等環境因素共同作用的影響,探究光環境與其他環境因子在調控花青素中的互作機制,對合理利用設施環境調控手段,精準調控園藝植物花青素的形成,進而改良觀賞植物花色、提高園藝產品的營養價值有重要的指導意義。
[1] WEI J Y, WU H J, ZHANG H Q, Li F, CHEN S R, HOU B H, SHI Y H, ZHAO L J, DUAN H J. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice.,2018, 41(3): 1608-1618.
[2] ISAAK C K, PETKAU J C, BLEWETT H, KARMIN O, SIOW Y L. Lingonberry anthocyanins protect cardiac cells from oxidative-stress- induced apoptosis., 2017, 95(8): 904-910.
[3] YOSHIDA K, KONDO T, OKAZAKI Y, KATOU K. Cause of blue petal colour., 1995, 373: 291.
[4] POUSTKA F, IRANI N G, FELLER A, LU Y, POURCEL L, FRAME K, GROTEWOLD E. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route inand contributes to the formation of vacuolar inclusions., 2007, 145(4): 1323-1335.
[5] HU D G, SUN C H, MA Q J, YOU C X, CHENG L L, Hao Y J. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples., 2016, 170(3): 1315-1330.
[6] SHITAN N, YAZAKI K. New insights into the transport mechanisms in plant vacuoles., 2013, 305: 383-433.
[7] RAMSAY N A, GLOVER B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity., 2005, 10(2): 63-70.
[8] LIU Y, TIKUNOV Y, SCHOUTEN R E, MARCELIS L F M, VISSER R G F, Bovy A. Anthocyanin biosynthesis and degradation mechanisms invegetables: A Review., 2018, 6: 52.
[9] GONZALEZ A, ZHAO M, LEAVITT J M, LLOYD A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex inseedlings., 2008, 53(5): 814-827.
[10] DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L. MYB transcription factors in, 2010, 15(10): 573-581.
[11] ZHU Z X, WANG H L, WANG Y T, GUAN S, WANG F, TANG J Y, ZHANG R J, XIE L L, LU Y Q. Characterization of theelements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation., 2015, 66(13): 3775-3789.
[12] PAZ-ARES J, GHOSAL D, WIENAND U, PETERSON P A, SAEDLER H. The regulatorylocus ofencodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators., 1987, 6: 3553-3558.
[13] QUATTROCCHIO F, WING J F, LEPPEN H, MOL J, KOES R E. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes., 1993, 5: 1497-1512.
[14] YAMAGISHI M, SHIMMOYAMADA Y, NAKATSUKA T, MASUDA K. TwoGenes, homologs of, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic Hybrid Lily., 2010, 51(3): 463-474.
[15] SUN C L, DENG L, DU M M, ZHAO J H, CHEN Q, HUANG T T, JIANG H L, LI C B, LI C Y. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh., 2020, 13(1): 42-58.
[16] YAN S S, CHEN N, HUANG Z J, LI D J, ZHI J J, YU B W, LIU X X, CAO B H, QIU Z K.encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription ofto fine-tune anthocyanin content in tomato fruit., 2020, 225(5): 2048-2063.
[17] COLANERO S, TAGLIANI A, PERATA P, GONZALI S. Alternative splicing in thegene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits., 2020, 1(1): 100006.
[18] TOHGE T, NISHIYAMA Y, HIRAI M Y, YANO M, NAKAJIMA J, AWAZUHARA M, INOUE E, TAKAHASHI H, GOODENOWE D B, KITAYAMA M, NOJI M, YAMAZAKI M, SAITO K. Functional genomics by integrated analysis of metabolome and transcriptome ofplants over-expressing an MYB transcription factor., 2005, 42: 218-235.
[19] PEEL G J, PANG Y, MODOLO L V, DIXON R A. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in., 2009, 59(1): 136-149.
[20] ESPLEY R V, HELLENS R P, PUTTERILL J, STEVESON D E, KUTTY-AMMA S, ALLAN A C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10., 2007, 49(3): 414-427.
[21] ESPLEY R V, BRENDOLISE C, CHAGNé D, KUTTY-AMMA S, GREEN S, VOLZ R, PUTTERILL J, SCHOUTEN H J, GARDINER S E, HELLENS R P, ALLAN A C. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples., 2009, 21(1): 168-183.
[22] MEDINA-PUCHE L, CUMPLIDO-LASO G, AMIL-RUIZ F, HOFFMANN T, RING L, RODRíGUEZ-FRANCO A, CABALLERO J L, SCHWAB W, MU?OZ-BLANCO J, BLANCO-PORTALES R. MYB10plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening offruits., 2014, 65(2): 401-417.
[23] STARKEYI? P, PAUK?TYT? J, KAZANAVI?IūT? V, DENKOVSKIEN? E, STANYS V, BENDOKAS V, ?IK?NIANAS T, RA?ANSKIEN? A, RA?ANSKAS R. Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (L.) MYB10and bHLHgenes., 2015, 10(5): e0126991.
[24] RAVAGLIA D, ESPLEY R V, HENRY-KIRK R A, ANDREOTTI C, ZIOSI V, HELLENS R P, COSTA G, ALLAN A C. Transcriptional regulation of flavonoid biosynthesis in nectarine () by a set of R2R3 MYB transcription factors., 2013, 13: 68.
[25] WANG Z G, MENG D, WANG A D, LI T L, JIANG S L, CONG P H, LI T Z. The methylation of thepromoter is associated with green-skinned sport in Max Red Bartlett pear., 2013, 162(2): 885-896.
[26] NAKATSUKA T, HARUTA K S, PITAKSUTHEEPONG C, ABE Y, KAKIZAKI Y, YAMAMOTO K, SHIMADA N, YAMAMURA S, NISHIHARA M. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers., 2008, 49(12): 1818-1829.
[27] LIU X F, XIANG L L, YIN X R, GRIERSON D, LI F, CHEN K S, YIN X R. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation inflowers., 2015a, 194: 278-285.
[28] COSTANTINI L, MALACARNE G, LORENZI S, TROGGIO M, MATTIVI F, MOSER C, GRANDO M S. New candidate genes for the fine regulation of the colour of grapes., 2015, 66(15): 4427-4440.
[29] CHAGNé D, WANG K L, ESPLEY R V, VOLZ R K, HOW N M, ROUSE S, BRENDOLISE C, CARLISE C M, KUMAR S, DE SILVA N, MICHELETTI D, MCGHIE T, CROWHURST R N, STOREY R D, VELASCO R, HELLENS R P, GARDINER S E, ALLAN A C. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes., 2013, 161: 225-239.
[30] AN X H, TIAN Y, CHEN K Q, LIU X J, LIIU D D, XIE X B, CHENG C G, CONG P H, HAO Y J. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples., 2014, 56(4): 650-662.
[31] JIAN W, CAO H H, YUAN S, LIU Y D, LU J F, LU W, LI N, WANG J H, ZOU J, TANG N, XU C, CHENG Y L, GAO Y Q, XI W P, BOUZAYEN M, LI Z G. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits., 2019, 6: 22.
[32] DUBOS C, LE GOURRIEREC J, BAUDRY A, HUEP G, LANET E, DEBEAUJOI I, ROUTABOUL J M, ALBORESI A, WEISSHAAR B, LEPINIEC L. MYBL2 is a new regulator of flavonoid biosynthesis in., 2008, 55(6): 940-953.
[33] PéREZ-DíAZ J R, PéREZ-DíAZ J, MADRID-ESPINOZA J, GONZáLEZ-VILLANUEVA E, MORENO Y, RUIZ-LARA S. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco., 2016, 90: 63-76.
[34] GAO J J, SHEN X F, ZHANG Z, PENG R H, XIONG A S, XU J, ZHU B, ZHENG J L, YAO Q H. The MYB transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic.,2011, 106(2): 235-242.
[35] SALVALLINI A, PIMENTEL P, MOYA-LEóN M A, HERRERA R. Increased accumulation of anthocyanins infruits by transient suppression ofgene., 2013, 90: 25-36.
[36] MATSUI K, UMEMURA Y, OHME-TAKAGI M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in., 2008, 55(6): 954-967.
[37] GOU J Y, FELIPPES F F, LIU C J, WEIGEL D, WANG J W. Negative regulation of anthocyanin biosynthesis inby a miR156- targeted SPL transcription factor., 2011, 23: 1512-1522.
[38] CAVALLINI E, MATUS J T, FINEZZO L, ZENONI S, LOYOLA R, GUZZO F, SCHLECHTER R, AGEORGES A, ARCE-JOHNSON P, TORNIELLI G B. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine., 2015, 167(4): 1448-1470.
[39] ALBERT N W, LEWIS D H, ZHANG H, SCHWINN K E, JAMESON P E, DAVIES K M. Members of an R2R3-MYB transcription factor family inare developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning., 2011, 65(5): 771-784.
[40] ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H B, MONTEFIORI M, BRENDOLISE C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots., 2014, 26(3): 962-980.
[41] ZHU H F, FITZSIMMONS K, KHANDLWAL A, KrANZ R G. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in., 2009, 2(4): 790-802.
[42] SPELT C, QUATTROCCHIO F, MOL J N, KOES R.ofencodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes., 2000, 12(9): 1619-1632.
[43] CHANDLER V L, RADICELLA J P, ROBBINS T P, CHEN J, TURKS D. Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation ofutilizinggenomic sequences., 1989, 1(12): 1175-1183.
[44] CONSONNI G, VIOTTI A, DELLAPORTA S L, TONELLI C. cDNA nucleotide sequence of, a regulatory gene in maize., 1992, 20(2): 373.
[45] BAUDRY A, HEIM M A, DUBREUCQ B, CABOCHE M, WEISSHAAR B, LEPINIEC L. TT2, TT8, and TTG1 synergistically specify the expression ofand proanthocyanidin biosynthesis in., 2004, 39(3): 366-380.
[46] LI P H, CHEN B B, ZHANG G Y, CHEN L X, DONG Q, WEN J Q, MYSORE K S, ZHAO J. Regulation of anthocyanin and proanthocyanidin biosynthesis bybHLH transcription factor MtTT8.,2016, 210(3): 905-921.
[47] BAI Y, PATTANAIK S, PATRA B, WERKMAN J R, XIE C H, YUAN L. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b of tobacco have originated from two ancestors and are functionally active., 2011, 234(2): 363-375.
[48] ELOMMA P, UIMARI A, MEHTO M, ALBERT V A, LAITINEN R A, TEERI T H. Activation of anthocyanin biosynthesis in() suggests conserved protein-protein and protein- promoter interactions between the anciently diverged monocots and eudicots.,2003, 133(4): 1831-1842.
[49] SHIMIZU Y, MAEDA K, KATO M, SHIMOMURA K. Co-expression ofandinduces anthocyanin accumulation in roots of culturedDC. plantlet on methyl jasmonate treatment., 2011, 49(2): 159-167.
[50] LAI B, DU L N, LIU R, HU B, SU W B, QIN Y H, ZHAO J T, WANG H C, HU G B. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis inandduring anthocyanin accumulation., 2016, 7: 166.
[51] DE VETTEN N, QUATTROCCHIO F, MOL J, KOES R. Thelocus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals., 1997, 11(11): 1422-1434.
[52] CAREY C C, STRAHLE J T, SELINGER D A, CHANDLER V L. Mutations in theregulatory gene of theanthocyanin pathway have distinct phenotypes relative to the functionally similargene in., 2004, 16(2): 450-464.
[53] LIU X F, YIN X R, ALLAN A C, LIN-WANG K, SHI Y N, HUANG Y J, FERGUSON I B, XU C J, CHEN K S. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry () during anthocyanin biosynthesis., 2013, 115(3): 285-298.
[54] AN X H, TIAN Y, CHEN K Q, WANG X F, HAO Y J. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation., 2012, 169(7): 710-717.
[55] ZHAO M R, LI J, ZHU L, CHANG P, LI L L, ZANG L Y. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development., 2019, 10(7): 496.
[56] AGUILAR-BARRAGáN A, OCHOA-ALEJO N. Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins inpepper fruit., 2014, 58(3): 567-574.
[57] YANG F X, CAI J, YANG Y, LIU Z B. Overexpression of microRNA828 reduces anthocyanin accumulation in., 2013, 115(2): 159-167.
[58] JIA X Y, SHEN J J, LIU H, Li F, DING N, GAO C Y, PATTANAIK S, PATRA B, LI R Z, YUAN L. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato., 2015, 242(1): 283-293.
[59] QI T c, SONG S S, REN Q C, WU D W, HUANG H , CHEN Y, FAN M, PENG W, REN C M, XIE D X. The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in.2011, 23(5): 1795-1814.
[60] WANG Y L, WANG Y Q, SONG Z Q, ZHANG H Y. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in., 2016, 9: 1395-1405.
[61] SHIN D H, CHOI M, KIM K, BANG G, CHO M, CHOI S B, CHOI G, PARK Y I. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in., 2013, 587(10): 1543-1547.
[62] NGUYEN N H, JEONG C Y, KANG G H, YOO S D, HONG S W, LEE H. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in., 2015, 84(6): 1192-1205.
[63] AN J P, QU F J, YAO J F, WANG X N, YOU C X, WANG X F, HAO Y J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple., 2017, 4: 17056.
[64] SHIN J, PARK E, CHOI G. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in., 2007, 49(6): 981-994.
[65] MAIER A, HOECKER U. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions., 2015, 10(1): e970440.
[66] MAZZUCATO A, WILLEMS D, BERNINI R, PICARELLA M E, SANTANGELO E, RUIU F, TILESI F,SORESSI G P. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation., 2013, 72: 125-133.
[67] MENG X C, WANG X J. Regulation of flower development and anthocyanin accumulation in., 2004, 79: 131-137.
[68] COMINELLI E, GUSMAROLI G, ALLEGRA D, GALBIATIA M, WADEB H K, JENKINSB G I, TONELLIA C. Expression analysis of anthocyanin regulatory genes in response to different light qualities in., 2008, 165(8): 886-894.
[69] QUATTROCCHIO F, VERWEIJ W, KROON A, SPELT C, MOL J, KOES R. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway., 2006, 18(5): 1274-1291.
[70] ALBEA N W, LEWIS D H, ZHANG H B, IRVING L J, JAMESON P E, DAVIES K M. Light-induced vegetative anthocyanin pigmentation in., 2009, 60(7): 2191-2202.
[71] 邵婉璐, 李月靈, 高松, 李鈞敏, 梁宗鎖. 光照強度對成熟紅顏草莓果實著色和花青素生物合成的影響及可能的分子機制. 植物研究, 2018, 38(5): 661-668.
SHAO W L, LI Y L, GAO S, LI J M, LIANG Z S. Effects of light intensity on the fruit coloration and anthocyanian biosynthesis inDuch.'Benihoppe' and the possible molecular mechanism., 2018, 38(5): 661-668. (in Chinese)
[72] ZHANG Y J, LI Y, LI W P, HU Z L, YU X H, TU Y, ZHANG M, HUANG J Y, CHEN G P. Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light., 2019, 6: 56.
[73] GU K D, WANG C K, HU D G, HAO Y J. How do anthocyanins paint our horticultural products?, 2019, 249: 257-262.
[74] KLEINE T, KINDGREN P, BENEDICT C, HENDRICKSON L, STRAND A. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response ofto high irradiance., 2007, 144(3): 1391-1406.
[75] DAS P K, BANG G, CHOI S B, YOO S D, PARK Y I. Photosynthesis-dependent anthocyanin pigmentation in., 2011, 6(1): 23-25.
[76] 胡可, 韓科廳, 戴思蘭. 環境因子調控植物花青素苷合成及呈色機理. 植物學報, 2010, 45(3): 307-318.
HU K, HAN K T, DAI S H. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors., 2010,45(3): 307-318. (in Chinese)
[77] 袁利. UV-C處理對紫甘藍花青素合成的影響以及花青素酰基轉移酶的克隆[D]. 北京: 中國農業科學院, 2018.
YUAN L. Study on effect from UV-C treatment on anthocyanin biosynthesis and the cloning of anthocyanin acyltransferase of Purple cabbage [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[78] 喻譞, 姜璐璐, 王煥宇, 金鵬, 鄭永華. UV-C處理對楊梅采后品質及苯丙烷類代謝的影響. 食品科學, 2015, 36(12): 255-259.
YU X, JIANG L L, WANG H Y, JIN P, ZHENG Y H. Effects of UV-C treatment on quality and phenylpropanoid metabolism of postharvest Chinese bayberry fruit., 2015, 36(12): 255-259. (in Chinese)
[79] 楊樂, 楊俊楓, 侯智霞, 宮中志, 王沖, 史文君. UV-B對不同發育時期離體藍莓主要果實品質及相關酶活性的影響. 西北植物學報, 2015, 35(12): 2477-2482.
YANG L, YANG J F, HOU Z X, GONG Z Z, WANG C, SHI W J. Effects of UV-B treatment on the major quality of Blueberry and related enzyme activities in different developmental stages., 2015,35(12): 2477-2482. (in Chinese)
[80] HUANG X, OUYANG X, YANG P, LAU O S, ChEN L, WEI N, DENG X W. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B., 2013, 110(41): 16669-16674.
[81] PASSERI V, KOES R, QUATTROCCHIO F M. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles., 2016, 7: 153.
[82] LI Y Y, MAO K, ZHAO C, ZHAO X Y, ZHANG X L, SHU H R, HAO Y J. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple., 2012, 160(2): 1011-1022.
[83] PARK J S, CHOUNG M G, KIM J B,HAHN B S,KIM J B, BAE S C,ROH K H,KIM Y H,CHEON C I,SUNG M K,CHO K J. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves., 2007, 26(4): 507-516.
[84] 齊艷, 邢燕霞, 鄭禾, 孫倩倩, 李殿波, 王晉芳, 石錦, 趙冰, 郭仰東. UV-A和UV-B提高甘藍幼苗花青素含量以及調控基因表達分析. 中國農業大學學報, 2014, 19(2): 86-94.
QI Y, XING Y X, ZHENG H, SUN Q Q, LI D B, WANG J F, SHI J, ZHAO B, GUO Y D. UV-A and UV-B involved in induction and regulation of anthocyanin biosynthesis in cabbage., 2014, 19(2): 86-94. (in Chinese)
[85] QIAN C Z, CHEN Z R, LIU Q, MAO W W, CHEN Y L, TIAN W, LIU Y, HAN J P, OUYANG X H, HUANG X. Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses., 2020. doi: 10.1016/j.molp.2020.02.015.
[86] LIU C C, CHI C, JIN L J, ZHU J H, YU J Q, ZHOU Y H. The bZip transcription factor HY5 mediates CRY1a‐induced anthocyanin biosynthesis in tomato.,, 2018, 41: 1762-1775.
[87] MATSUMARU K, KAMIHAMA T, INADA K. Effect of covering materials with different transmission properties on anthocyanin content of eggplant pericarp., 1971, 9: 9-15.
[88] GUO J, WANG M H. Ultraviolet A-specific induction of anthocyanin biosynthesis andexpression in tomato (L.).. 2010, 62(1): 1-8.
[89] ZHOU B, LI Y H, XU Z R, YAN H F, HOMMA S, KAWABATA S. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip ()., 2007, 58(7): 1771-1781.
[90] JIAO Y L, LAU O S, DENG X W. Light-regulated transcriptional networks in higher plants., 2007, 8(3): 217-230.
[91] LAU O S, DENG X W. The photomorphogenic repressors COP1 and DET1:20 years later., 2012, 17(10): 584-593.
[92] LIU B, ZUO Z C, LIU H T, LIU X M, LIN C T.cryptochrome 1 interacts with SPA1 to suppress COP1activity in response to blue light.,2011, 25(10): 1029-1034.
[93] JIANG Z H, CHEN C, WANG J, XIE W Y, WANG M, LI X, ZHANG X Y. Purple potato (L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense., 2016, 70(1): 45-53.
[94] MENG L S. Transcription coactivatorANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of., 2015, 38: 838-851.
[95] HERNáNDEZ R, EGUCHI T, DEVECI M, KUBOTA C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps., 2016, 213: 270-280.
[96] SHI L Y, CAO S F, CHEN W, YANG Z F. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit., 2014, 179: 98-102.
[97] KOKALJ D, ZLATI? E, CIGI? B, VIDRIH R. Postharvest light- emitting diode irradiation of sweet cherries (L.) promotes accumulation of anthocyanins., 2019, 148: 192-199.
[98] KADOMURA-ISHIKAWA Y, MIYAWAKI K, NOJI S, TAKAHASHI A. Phototropin 2 is involved in blue light-induced anthocyanin accumulation infruits., 2013, 126(6): 847-857.
[99] XU F, CAO S F, SHI L Y, CHEN W, SU X G, YANG Z F. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit., 2014, 62(20): 4778-4783.
[100] KATZ A, WEISS D. Light regulation of anthocyanin accumulation and chalcone synthase gene expression inflowers., 1999, 47(4): 225-229.
[101] 陳靜, 陳啟林, 翁俊, 劉源, 程智慧, 徐春和.不同紅光/遠紅光比例(R/FR)的光照影響番茄幼苗葉片中花青素合成的研究. 西北植物學報, 2004, 24(10): 1773-1778.
CHEN J, CHEN Q L, WENG J, LIU Y, CHENG Z H, XU C HEffect of illumination with different red/far-red ratios on anthocyanidin synthesis in tomato seedling leaves., 2004, 24(10): 1773-1778. (in Chinese)
[102] LIU Z J, ZHANG Y Q, WANG J F, LI P, ZHAO C Z, CHEN Y D, BI Y R. Phytochromeinteracting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light inseedlings., 2015, 238: 64-72.
[103] PFEIFFER A, NAGEL M K, POPP C,WüST F,BINDICS J,VICZIáN A,HILTBRUNNER A,NAGY F,KUNKEL T,SCH?FER E. Interaction with plant transcription factors can mediate nuclear import of phytochrome B., 2012, 109(15): 5892-5897.
[104] MCNELLIS T W, VON AMIM A G, ARAKI T, KOMEDA Y, MISER S, DENG X W. Genetic and molecular analysis of an allelic series ofmutants suggest functional roles for the multiple protein domains., 1994, 6(4): 487-500.
[105] 潘曉琴, 宋世威. 光環境影響植物花青素生物合成研究進展. 植物學研究, 2019, 8(2): 118-125.
PAN X Q, SONG S W. Research advance on the effects of light environment on anthocyanin biosynthesis in plants., 2019, 8(2): 118-125. (in Chinese)
[106] 閆海芳. 光環境影響花青素合成途徑中相關基因表達的機制[D]. 哈爾濱: 東北林業大學, 2003.
YAN H F. Mechanism of light environment influencing the expression of correlated genes in biosynthesis pathway of anthocyanin [D]. Harbin: Northeast Forestry University, 2003. (in Chinese)
[107] 史寶勝. 紫葉李葉色生理變化及影響因素研究[D]. 哈爾濱: 東北林業大學, 2006.
SHI B S. Research on the physiological characters and the influence factors on leave color of cherry plum [D]. Harbin: Northeast Forestry University, 2006. (in Chinese)
[108] MAIER A, SCHRADER A, KOKKELINK L, FALKE C, WELTER B, INIESTO E, RUBIO V, UHRIG J F, H€ULSKAMP M, HOECKER U. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in., 2013, 74(4): 638-651.
[109] TAKOS A M, JAFFE F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples., 2006, 142: 1216-1232.
[110] BUTELI E, TITTA L, GIORGIO M, MOCK H P, MATROS A, PETEREK S, SCHIJLEN EGWM, HALL R D, BOVY A G, LUO J, MARTIN C (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors., 2007, 26, 1301-1308.
[111] KATSUMOTO Y, FUKUCHI-MIZUTANI M, FUKUI Y, BRUGLIERA F, HOLTON T A, KARAN M, NAKAMURA N, YONEKURA- SAKAKIBARA K, TOGAMI J, PIGEAIRE A. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin., 2007, 48: 1589-1600.
[112] BRUGLIERA F, TAO G Q, TEMS U, KALC G, MOURADOVA E, PRICE K, STEVENSON K, NAKAMURA N, STACEY I, KATSUMOTO Y, TANAKA Y, MASON J G. Violet/blue chrysanthemums- metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors., 2013, 54: 1696-1710.
[113] HE X Z, LI Y, LAWSON D, XIE D Y. Metabolic engineering of anthocyanins in dark tobacco varieties., 2017, 159: 2-12.
Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops
WANG Feng, WANG XiuJie, ZHAO ShengNan, YAN JiaRong, BU Xin, ZHANG Ying, LIU YuFeng, XU Tao, QI MingFang, QI HongYan, LI TianLai
(College of Horticulture, Shenyang Agricultural University/The State Education Ministry and Liaoning Provincial Key Laboratory of Protected Horticulture/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866)
Anthocyanins are among the most important flavonoid compounds in plants, which play significant roles in color formation of plant organ, such as flower and fruits, as well as antioxidant process. Light is one of the most important environmental factors affecting anthocyanin biosynthesis pathway, but it still remains unclear in the mechanism and signaling networks of light regulation of anthocyanin. This review briefly introduced the anthocyanin biosynthesis and transportation pathway, and summarized the molecular mechanism of anthocyanin transcriptional regulation by three kinds of transcription factors, including MYB, bHLH and WDR. In addition, it emphasized on the light signaling regulation of anthocyanin biosynthesis. The researches showed that the light environment (light intensity, light quality, and light duration) regulated the biosynthetic process of anthocyanin mainly through different light receptors (UVR8, CRYs, PHOTs, and PHYs), which affected the ubiquitination ability of COP1, the stability of HY5, and the stability of other light signal transcription factors, such as the phytochrome-interacting factors (PIFs). On the one hand, these light signal factors directly could bind to the promoters of,and, activate or inhibit these genes expression and then regulate the synthesis of anthocyanin. On the other hand, these light signal factors interacted with proteins of MYB, bHLH and WDR, affecting the stability of the MBW complex formed by them. In addition, these light signaling factors could also regulate anthocyanin synthesis through MBW independent pathways, such as HY5 also affect anthocyanin biosynthesis by regulating. In addition, some unknown light signaling factors might directly or indirectly regulate anthocyanin synthesis genes and interacting with some vacuolar membranes proteins in a MBW independent manner, to change vacuolar acidification and regulate anthocyanin synthesis. At the same time, light signaling factors also affected some factors in the photosynthetic electron transport chain through MBW dependent or MBW independent pathways, then affected anthocyanin synthesis in plants. How these pathways were coordinated and which pathway was preferentially responded by light environments (light intensity, light quality, light duration)? This paper provided a basis to further investigate the molecular mechanism regulating anthocyanin biosynthesis by light signalings. The study explored the effective ways and target molecules for light regulation of anthocyanin accumulation, andcreated opportunities for the development of anthocyanin-rich horticultural crops through genetic and metabolic engineering, and light environmental management.
light; anthocyanins; transcription factor; transcriptional regulation; horticultural crops

10.3864/j.issn.0578-1752.2020.23.015
2020-04-06;
2020-06-30
國家自然科學基金(31801904)、遼寧省“興遼英才計劃”(XLYC1807020)、遼寧省高等學校創新人才支持計劃(LR2018027)、遼寧省博士啟動基金(20180540094)、沈陽市中青年科技創新人才支持計劃(RC200449)、國家重點研發計劃(2018YFD1000800,2019YFD1000300)、國家現代農業產業技術體系建設專項(CARS-23-C01)、遼寧省“百千萬人才工程”(LNBQW2018W0483)、沈陽農業大學科研啟動基金(880418039)
通信作者王峰,E-mail:fengwang@syau.edu.cn。通信作者李天來,E-mail:tianlaili@126.com
(責任編輯 趙伶俐)