999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

量子科技在商業銀行的應用

2020-12-28 06:55:04吳永飛王彥博王秋實施巍
銀行家 2020年12期
關鍵詞:商業銀行

吳永飛 王彥博 王秋實 施巍

導語:習近平總書記在2020年10月16日主持中共中央政治局第24次集體學習時強調:“要充分認識推動量子科技發展的重要性和緊迫性,加強量子科技發展戰略謀劃和系統布局,把握大趨勢,下好先手棋。”有研究表明,量子科技具有巨大的應用價值和前景,并且在國家政策護航下,未來量子科技市場規模將突破千億元級別。FinTech時代,科技已成為商業銀行的核心能力,在眾多新興精尖技術中,量子計算由于其潛在的超越經典計算的強大算力,在商業銀行應用領域前景廣闊。

人工智能時代,國有商業銀行、股份制商業銀行、城商行和互聯網銀行均開啟了數字化轉型的工作,經典的機器學習和數據挖掘技術被廣泛應用于銀行的營銷、授信、風控、運營和反洗錢等核心業務領域。近年來大量實踐表明,許多機器學習算法, 如決策樹、邏輯回歸、樸素貝葉斯、支持向量機、人工神經網絡等,在商業銀行實際問題的處理上表現出比傳統統計模型更好的性能,通過算法可以使銀行的產品創新更迅速、營銷目標更精準、客戶服務更貼心、業務運營更高效、風險管理更全面、財務報告更準確。

然而,銀行數字化轉型的核心資源是大數據,銀行金融服務的競爭力是響應速度。但是,隨著大數據近年來呈現爆炸式增長,經典計算的能力瓶頸會隨著數據體量的急劇增長而暴露,未來將可能對金融科技發展產生阻礙。量子計算具有遠超經典計算資源的算力優勢,能夠提升商業銀行智能金融服務的數字化水平和響應速度。利用量子算法處理經典問題,稱為“量子增強機器學習”。有研究表明,量子增強機器學習具有處理速度快、所需數據量更小、處理能力強等優點。

量子科技的發展歷程

許多研究者已經在量子算法上開展了相關研究。最早的是1994年,麻省理工學院貝爾實驗室彼得·舒爾(Peter Shor)面向大整數的質因數分解提出Shor算法,理論上可以在100秒之內破解一個2048比特強度的RSA密鑰,而使用經典計算機則可能需要10億年。兩年后的1996年,同在貝爾實驗室的格羅弗(Lov Grover)提出了Grover搜索算法,可以在大約2128次迭代內窮舉破解一個256比特的密鑰,這較經典計算機有了平方級別的加速。

關于量子神經網的研究可以追溯到1995年,卡克(Subhash C. Kak)提出了量子神經計算的概念;隨后,1996年,貝爾曼(E.C. Behrman)提出了一種基于量子點的神經網絡模型; 同年,托特(Geza Toth)研究了量子細胞神經網絡;1998年, 文圖拉(Da n Ve n t u ra)研究了量子疊加態神經網絡;2000 年,松井(Nobuyuki Matsui)研究了量子門電路神經網絡; 2006年,周日貴研究了量子感知機;2014年,舒爾德(Maria Schuld)研究了由量子隨機行走構建神經網絡。然而,大多數量子算法研究僅停留于理論方面,應用量子算法解決實際問題的案例屈指可數,在商業銀行領域應用量子神經網絡技術解決實際問題尚屬空白。

2020年,商業銀行ATM機具的使用率因受到移動支付的沖擊而出現了大量的撤機現象,全國范圍內ATM機具減少了4萬余臺。在此背景下,商業銀行需要精準地篩選出效能差、使用率低的機具設備,并進行撤機,以縮減成本。本文以國內某股份制商業銀行ATM業務智能化決策問題為例,通過構建量子神經網絡算法模型對ATM機具進行有效識別,識別結果作為ATM機具裁撤的重要依據,為商業銀行金融服務和金融管理提供智能化、量子化的決策支持,同時為量子科技在商業銀行領域的應用實踐進行有益探索。

信息科技理論基礎

經典神經網絡原理

隨著人工智能、大數據時代的到來,機器學習已經成為一種挖掘數據內在規律信息的有效工具。對于機器學習模型,根據特征和標簽的已知性,主要分為有監督學習(Supe rvised-learning)和無監督學習(Unsupervised-learning)。其中,人工神經網絡是一類應用最為廣泛的有監督學習方法,它通過多層神經元,一步步提取數據之間的特征,挖掘出數據內部的規律。現有的神經網絡算法在處理結構化數據、文本數據、圖像數據等方面有著很強的優勢;而對于數據挖掘分類問題,BP神經網絡是一種廣泛使用的人工神經網絡算法。

BP神經網絡是一種多層前饋網絡,通過誤差反向傳播算法進行訓練,最早由魯姆哈特(David Rumelhart)和麥克萊蘭(James McClelland)于1986年提出。BP神經網絡包括輸入層、隱藏層和輸出層三個部分,能夠學習大量的輸入-輸出模式映射關系,且這種映射關系的數學方程無需事前揭示。BP神經網絡主要是通過反向傳播算法來更新各結點之間的權重,使得網絡的預測結果逼近期望結果,其主要的學習過程大致可以分為正向傳播、反向傳播和學習收斂三個部分。

量子計算機

量子計算機的設計主要遵循量子力學規律,量子疊加態的存在使其具有天然的并行計算能力。2000年前后,IBM首席科學家迪文森佐(David Divincenzo)給出了制造量子計算機所需要的五大要素,即量子比特的初始化能力、可控能力、擴展能力、穩定能力和被測量能力。基于上述基本要素,針對量子計算機實現的物理系統涌現出了大量的研究方案,如超導電路方案、離子阱方案、光子實現方案、核磁共振方案等。

超導電路量子計算利用約瑟夫森結在超低溫下形成的分立能級作為量子比特,主要有相位量子比特、磁通量子比特和電荷量子比特三種形式,約瑟夫森結具有“超導體-絕緣體-超導體” 的三明治結構。離子阱技術的原理是利用電荷與磁場間的作用力來囚禁離子,并利用受限離子的兩個能級作為量子比特,通過激光來實現量子門的操作。核磁共振量子計算機主要利用核自旋在強磁場下的劈裂能級作為量子比特,并通過電磁波操控核自旋實現量子門操作,該技術的優點之一在于它可以在常溫常壓下進行工作。

量子神經網絡

本文所使用的量子神經網絡本質上是一種參數化的量子線路,其訓練過程主要是利用量子線路不斷預測類別標簽并計算損失函數,而后使用梯度下降、反向傳播的方法得到最小化損失函數下的最優量子線路參數。量子線路主要是由量子門組成的,而量子門是以矩陣的形式表示的,可以對由經典數據轉換為量子態的輸入向量進行計算并輸出預測結果;同時,基于反向傳播可以對量子門的參數進行調節,這一點保證了量子線路能夠充分借鑒經典神經網絡的思想進行參數優化。量子神經網絡既可以用來運行量子變分算法,如用來尋找哈密頓量的基態;亦可以用來處理與經典神經網絡相同的目標問題。量子神經網絡在較大規模的量子計算機上相比經典神經網絡,可以處理更多的數據,并有更強的模型表達能力。

量子神經網絡實證分析

數據來源與特征參數選擇

本文選取了國內某股份制商業銀行2243臺ATM機具作為數據樣本,范圍覆蓋全國31個省、直轄市、自治區,型號包括取款機、存取款一體機和循環機。數據來源為ATM機具原始監控報表數據和流水日志,數據時間范圍跨度為兩年。

為構建智能預測模型,本文選定特征參數,通過取均值、中位數、方差等統計學方法對報表數據進行計算加工,最終得出4 個特征參數,包括故障次數、滿鈔時間、離柜率趨勢和日均繁忙時間。同時,選定“撤機”與“不撤機”作為輸出標簽,該標簽為相關業務管理部門根據ATM機具所在地區綜合環境、成本、運行情況等要素,通過專家評分,最終給出的一套貼合業務實際的是否撤機標識。

數據的量子化轉換

在使用量子計算機處理經典數據時,首先需要將經典數據編碼為希爾伯特空間中的量子狀態,這個過程通常被稱為量子嵌入或量子編碼。目前有三種常用的量子嵌入方法:一是基礎嵌入方法,即先將經典數據轉化為整數,再將轉化后的整數表示為二進制字符串,最后將二進制字符串依次表示為量子子系統的狀態。這種方法的優點是量子線路短,缺點則是需要大量的量子比特。二是振幅嵌入方法,即將歸一化后的經典數據作為量子狀態的振幅。由于N個量子比特有2N個振幅,因此振幅嵌入可以編碼指數級的經典信息;然而該方法需要很深的量子線路,在當前的量子設備上不能很好地實現。三是變分嵌入方法,即將經典數據作為量子線路的參數,使用固定的變分線路編碼數據。該方法在現有的量子計算機上可以較為有效地使用。

本文采用了變分嵌入方法,先將數據歸一化處理到[0,π/2] 區間,再作為量子線路的部分參數進行量子寫入,接下來則可以結合所設計的量子線路對線路上的其他參數進行機器學習。

量子神經網絡計算過程與結果

本文使用了2量子比特的核磁共振量子計算機。用于實驗的機器單比特門保真度高于99%,雙比特門保真度高于98%,可支持任意角度門操作,也可以實現任意2比特的量子算法,適用于量子分類算法應用。

想要將4個特征參數下的經典數據嵌入到2個量子比特,先要將每一個特征下的經典數據線性歸一化到[0,1]區間,再使用arcsin函數將經典數據映射到[0,π/2]區間,結合中心量子線路,優化參數并建立一個0~1的分類模型,數據嵌入的量子線路和中心量子線路設計如圖1、圖2所示。

在全部數據樣本中,選擇三分之二的數據樣本(1496)作為訓練集,另外三分之一的數據樣本(747)作為測試集;訓練的損失函數為鉸鏈損失,訓練的時期(epoch)為4,批大小為180。量子比特通過量子門的操作后,測量了中心量子線路最后的量子位在Z軸上的投影,由于核磁共振量子計算機針對一個數據樣本進行觀測的原子數量是萬億以上的,所以一次測量的結果就是萬億次對樣本預測結果的平均值,最終根據平均值得到標簽預測結果。

通過數據實驗, 觀測第二個量子比特的最終狀態, 可以得出結果: 準確率A c c u r a c y = ( T P + T N ) / (TP+TN+FP+FN)=75.57%。利用量子神經網絡對商業銀行ATM機具的是否撤機進行判斷,本文設計的2比特量子神經網絡模型達到了預期效果。

結語

量子金融科技時代,量子算法獨有的優勢會在一定程度上彌補經典算法的缺陷,并為商業銀行帶來巨大價值。本文將量子神經網絡技術應用于商業銀行ATM機具管理的智能決策問題上, 準確地識別了效能較差的ATM機具設備,對銀行的智能決策提供了依據。未來,隨著量子計算機量子比特數目的不斷增加,量子算法將進一步與經典人工智能算法相結合,并在大數據的支持下,為商業銀行的金融科技發展和數字化轉型帶來更大價值。

王彥博(wangyanbo@lyzdfintech.com)、王秋實(qwangcr@connect. ust.hk)為本文共同通訊作者。龍盈智達(北京)科技有限公司大數據中心楊璇、史杰、徐奇、宮雅菲,深圳量旋科技有限公司項金根、鄒均庭對本文亦有貢獻。感謝香港科技大學曾蓓教授,曹晨風的有益討論。

(作者單位:華夏銀行股份有限公司、龍盈智達(北京)科技?有限公司、香港科技大學物理系、深圳量旋科技有限公司)

商業銀行月度資訊

《網絡小額貸款業務管理暫行辦法(征求意見稿)》發布

11月2日,為規范小額貸款公司網絡小額貸款業務,統一監管規則和經營規則,促進網絡小額貸款業務規范健康發展,中國銀保監會、中國人民銀行就《網絡小額貸款業務管理暫行辦法(征求意見稿)》公開征求意見。

央行報告:信托業風險存外溢可能

11月6日,央行發布的《中國金融穩定報告(2020)》首次將信托業以專題形式呈現,分析了其風險成因并給出發展建議。報告稱“信托業風險暴露加快,存在外溢可能”,信托業強監管、嚴排查使行業風險暴露更為充分。

央行再次公布銀行壓力測試結果

11月6日,央行再次公布銀行壓力測試結果,測試銀行數量由1171家增至1550家,測試項目由兩項擴展至三項。宏觀情景壓力測試結果顯示,在輕度、中度、極端沖擊下,2020年末分別有10家、13家、21家銀行未通過測試。

財政部下達2000億元專項債化解中小銀行風險

11月11日,財政部表示,經國務院批準,已下達用于支持化解地方中小銀行風險的新增專項債券額度2000億元,目前分地區額度已全部下達。

銀保監會原則同意包商銀行進入破產程序

11月12日,銀保監會在《關于包商銀行股份有限公司破產申請事項的請示》(包商接管組〔2020〕26號)中批復:“原則同意包商銀行進入破產程序。”

部分銀行拖延、拒絕為小微企業開戶,央行下發風險提示

11月15日,央行辦公廳日前向央行上海總部、各分行、營管部、省會城市中心支行等下發《積極穩妥解決企業留言問題 切實提升企業銀行賬戶服務質效》的風險提示,并要求轉發至轄內銀行機構。

浙商銀行區塊鏈平臺通過工信部電子標準院所有功能測試

11月20日,浙商銀行區塊鏈平臺完成與國產操作系統、服務器、云平臺等軟硬件的全面適配,并成為全國業內首個通過中國電子技術標準化研究院區塊鏈專項測試全部用例的機構。

上海農商銀行IPO成功過會

11月26日,中國證券監督管理委員會審核通過了上海農村商業銀行股份有限公司的首次公開發行股份的申請。作為2020年第一家過會的農商行,上海農商銀行也即將成為A股第9家上市農商行。

猜你喜歡
商業銀行
商業銀行資金管理的探索與思考
支付機構與商業銀行迎來發展新契機
中國外匯(2019年10期)2019-08-27 01:58:00
“商業銀行應主動融入人民幣國際化進程”
中國外匯(2019年8期)2019-07-13 06:01:26
基于因子分析法國內上市商業銀行績效評
智富時代(2019年4期)2019-06-01 07:35:00
關于建立以風險管理為導向的商業銀行內部控制的思考
關于加強控制商業銀行不良貸款探討
消費導刊(2017年20期)2018-01-03 06:27:21
國有商業銀行金融風險防范策略
我國商業銀行海外并購績效的實證研究
我國商業銀行風險管理研究
當代經濟(2015年4期)2015-04-16 05:57:02
發達國家商業銀行操作風險管理的經驗借鑒
現代企業(2015年6期)2015-02-28 18:52:13
主站蜘蛛池模板: 国内精品久久久久久久久久影视 | 福利在线一区| a在线亚洲男人的天堂试看| 免费一级成人毛片| 国产成人高清精品免费| 玩两个丰满老熟女久久网| 国产精品无码一区二区桃花视频| 精品视频一区二区观看| 国产簧片免费在线播放| 日本黄色不卡视频| 美女内射视频WWW网站午夜| 日韩在线第三页| 欧美自慰一级看片免费| 色国产视频| 999精品在线视频| 天堂成人在线| 性视频久久| 久久综合一个色综合网| 国产不卡在线看| 91午夜福利在线观看| 国产资源站| 天堂av高清一区二区三区| 91在线国内在线播放老师| 欧美激情网址| 亚洲免费成人网| 欧美日韩国产在线观看一区二区三区| 日韩大乳视频中文字幕| 91久久偷偷做嫩草影院| 中文字幕欧美日韩高清| 九九九精品成人免费视频7| 人妻中文字幕无码久久一区| 日本不卡在线视频| 国产成人亚洲综合A∨在线播放| 亚洲无码91视频| 71pao成人国产永久免费视频| 91丝袜乱伦| 精品无码一区二区三区在线视频| 天天色天天操综合网| 亚洲精品成人片在线播放| 色婷婷在线影院| 2021亚洲精品不卡a| 亚洲区视频在线观看| 精品撒尿视频一区二区三区| 在线观看热码亚洲av每日更新| 国产香蕉一区二区在线网站| 久久中文字幕不卡一二区| 婷婷午夜天| 三级视频中文字幕| 高潮毛片无遮挡高清视频播放| 少妇高潮惨叫久久久久久| 欧美天天干| 国产成人一级| 一区二区影院| 国产1区2区在线观看| 久久女人网| 青青操视频免费观看| 丁香六月激情婷婷| 在线va视频| 国产激情无码一区二区免费| 国产主播在线观看| 四虎国产精品永久一区| 国产在线91在线电影| 天堂网亚洲系列亚洲系列| 热99re99首页精品亚洲五月天| 伊在人亚洲香蕉精品播放| 国产乱码精品一区二区三区中文| 久久精品一卡日本电影| 日韩精品久久久久久久电影蜜臀| 成人精品视频一区二区在线| 91精品aⅴ无码中文字字幕蜜桃| 欧美色图第一页| 青青草原偷拍视频| 美女一级毛片无遮挡内谢| 91精品国产一区自在线拍| 日韩精品一区二区三区视频免费看| 久久黄色视频影| 韩日午夜在线资源一区二区| 国产成人综合久久精品尤物| 再看日本中文字幕在线观看| 无码av免费不卡在线观看| 日韩无码真实干出血视频| 538精品在线观看|