榮良燕 楊娟春 趙拎玉 鐘桂霞 楊鵬 李儒仁



摘 要:以商業發酵劑(木糖葡萄球菌+戊糖片球菌)為對照組,不同發酵劑組合(木糖葡萄球菌+副干酪乳桿菌、木糖葡萄球菌+戊糖片球菌+副干酪乳桿菌)為實驗組,通過對發酵香腸水分含量、pH值、水分活度、色澤、質地、風味和感官品質等指標進行測定,確定最佳發酵劑及適宜發酵的香腸直徑。結果表明:相較于商業發酵劑,木糖葡萄球菌與副干酪乳桿菌組合發酵的香腸總體可接受性相對較高,且庚醛、1-辛烯-3-醇、乳酸乙酯、戊酸乙酯、癸酸乙酯、2-甲基丙酸乙酯等愉悅風味物質為該組獨有,其特征主要表現為更加濃郁的清新味、甜香味、果香味和花香味;適宜的直徑(21 mm)、水分含量((25.40±0.00)%)和硬度((2 812.46±767.93)g)以及相對較高的pH值(pH 5.57±0.02)是該組發酵香腸口感顯著高于其他2 組的重要原因。因此,木糖葡萄球菌與副干酪乳桿菌組合發酵的小直徑香腸食用品質最佳。
關鍵詞:戊糖片球菌;木糖葡萄球菌;副干酪乳桿菌;質地;風味
Abstract: Fermented sausages were manufactured with two different mixed starter cultures: Staphylococcus xylosus + Lactobacillus paracasei, and Staphylococcus xylosus + Pediococcus pentosaceus + Lactobacillus paracasei. A commercial starter culture (Staphylococcus xylosus + Pediococcus pentosaceus) was used as the control. The moisture content, pH value, water activity, color, texture, flavor and sense quality of fermented sausages were determined. By doing so, we aimed to determine the optimal starter culture and diameter of fermented sausages. The results showed that the overall acceptability of the sausage fermented with Staphylococcus xylose + Lactobacillus paracasei was higher than that of the control group, and it was found to exclusively contain heptanal, 1-octene-3-alcohol, ethyl lactate, ethyl pentanoate and ethyl decanoate, which contributed to a pleasant flavor characterized by refreshing, sweet, fruity and floral aromas. The mouth-feeling of this sausage was significantly superior to that of the two other groups because of its appropriate diameter (21 mm), moisture content ((25.40 ± 0.00)%) and hardness (2 812.46 ± 767.93) g) as well as higher pH value (pH 5.57 ± 0.02). Therefore, the eating quality of small-diameter sausages fermented by combination of Staphylococcus xylose and Lactobacillus paracei was the best.
Keywords: Pediococcus pentosaceus; Staphylococcus xylosus; Lactobacillus paracasei; texture; flavor
DOI:10.7506/rlyj1001-8123-20200810-192
中圖分類號:TS251.5? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼:A 文章編號:1001-8123(2020)10-0033-07
傳統自然發酵香腸是一種由微生物轉化利用碎肉中蛋白質、脂肪、碳水化合物等營養組分形成的營養價值較高、風味獨特的中高檔發酵肉制品[1-2]。自然發酵香腸在歐美地區擁有很高的市場占有率,2 000多年的消費歷史和卓越的品質是保證其銷量的重要原因[3]。近10 年來,消費升級驅動大量進口發酵香腸入駐中國市場,銷量逐年攀升,但傳統自然發酵香腸的加工嚴重依賴環境、氣候等因素,且存在季節依賴性強、發酵周期較長等問題[4-5],導致自然發酵香腸的銷量存在供不應求的局面。采用進口發酵劑和發酵工藝是解決該問題的主要策略,這在一定程度上彌補了自然發酵的缺陷[6],但相較于自然發酵的高檔產品,接種發酵的切片即食類干腌發酵香腸在風味上仍存在較大差距[7]。
發酵肉制品加工一般依據菌種快速酸化、改善風味[8]等發酵特性,將篩選出的乳酸菌和凝固酶陰性球菌復配為商業發酵劑[9-12]。目前普遍選擇清酒乳桿菌和木糖葡萄球菌(Staphylococcus xylosus)[13]、植物乳桿菌和木糖葡萄球菌[14-15]、戊糖片球菌(Pediococcus pentosaceus)和木糖葡萄球菌[16]等復配作為商業發酵劑,但其獲得的產品風味始終不及自然發酵。此外,部分具有益生潛力的干酪乳桿菌[17-18]、鼠李糖乳桿菌[19]等也被用于改良發酵香腸的風味,但其改善效果有限。因此,有必要尋找更適宜的發酵劑,解決現有商業發酵劑產香能力不足的問題。
采用IBM SPSS Statistics 19軟件進行數據統計分析;采用方差分析確定差異顯著性,P<0.05表示差異顯著。
2 結果與分析
2.1 不同發酵劑和香腸直徑對發酵香腸感官品質的影響
發酵香腸的感官特征是影響消費者喜好程度的重要因素。由圖1可知,A35和A21組發酵香腸總體可接受性較高,其風味特征為清新味、甜香味和果香味較濃郁,上述風味不足可能是導致B35、C35和B21、C21組發酵香腸總體可接受性相對較低的重要原因。各處理組之間總體可接受性具有上述差異的主要原因在于腸體中微生物和不同的發酵劑組合利用肉中脂肪和蛋白質的代謝性能不同,產生的代謝產物不同,導致感官特性產生差異[27]。
2.2 不同發酵劑和香腸直徑對發酵香腸pH值、水分含量和aw的影響
發酵香腸的總體可接受度與其pH值緊密相關,相對較高的pH值(5.68~5.89)更容易獲得較高的感官評分[28]。由表2可知,相較于其余組,總體可接受性較高的A35、A21組發酵香腸pH值相對較高(pH>5.5),這與發酵香腸中菌種的組合方式緊密相關,說明B、C組的戊糖片球菌酸化能力相對較強[29],且副干酪乳桿菌與其共同接種產生的代謝競爭有助于減少發酵體系中酸性代謝產物的積累,從而提高發酵香腸的pH值[30]。
發酵香腸的水分含量相對較低時,由于其具備更好的硬度和咀嚼度,更容易獲得消費者的青睞[31]。各組發酵香腸的水分含量為16.60%~25.40%,屬于典型的干腌發酵香腸[30]。相較于B、C組,總體可接受性較高的A組發酵香腸水分含量相對較高(19.07%、25.40%)。
各組發酵香腸的aw為0.73~0.76,在小直徑發酵香腸中,不同發酵劑組間aw差異顯著(P<0.05),相較于C21組,A21和B21組aw較高,而在大直徑發酵香腸中,不同發酵劑組間aw無顯著差異。這一結果與Mohtanali等[29]的研究結果相似,發酵環境中引入酸化能力較強的戊糖片球菌更容易降低環境pH值,進而引起蛋白質凝膠化程度上升及持水能力下降[32],最終導致發酵香腸加工過程中內部水分向外遷移較多[30],這可能是pH值較低處理組水分含量和aw較低的主要原因。
2.3 不同發酵劑和香腸直徑對發酵香腸色澤的影響
發酵香腸的色澤特征是影響消費者喜好度的重要因素之一。由表3可知,相較于其余組,A35和B35組發酵香腸L*顯著較高(P<0.05),這與A35和B35組香腸成熟結束后的水分含量相對較高有關。在小直徑發酵香腸中,不同發酵劑組間L*差異顯著(P<0.05),但感官評分差異不顯著,這一結果與Chen Jianshe[33]的研究結果類似。此外,大、小直徑香腸的a*分別為13.89~16.31、11.89~14.14,b*分別為5.20~7.94、5.36~6.58,且不同組間均存在顯著差異(P<0.05),但感官評價人員很難感受這些細微差異,后期有待建立較為系統的方法將色澤測定結果與感官評價結果綜合起來進行分析。
2.4 不同發酵劑和香腸直徑對發酵香腸質構特性的影響
質構是發酵香腸成熟程度的重要指標,通過硬度、彈性、內聚性和咀嚼度4 個指標來評判香腸的質構品質特性。由表4可知,B、C組發酵香腸的硬度顯著高于A組(P<0.05),其原因可能與B、C組接種戊糖片球菌的產酸能力有關,相對較低的pH值更易導致肉類蛋白的變性和持水力下降,使發酵成熟過程中香腸的內部形成密度和硬度更大的凝膠網絡結構[34],從而使香腸的硬度增大。在彈性方面,各組發酵香腸間均無顯著差異。在大直徑香腸中,不同發酵劑組間內聚性差異顯著(P<0.05)。B35組的咀嚼度均高于其他組,但感官評價人員并不能完全感受到細微的差異,因此在后續的產品品質分析中,有待建立更為合理的方法綜合分析感官屬性和產品屬性。
2.5 不同發酵劑和香腸直徑對發酵香腸揮發性風味物質的影響
由表5可知,各組發酵香腸中醛類、醇類、酯類、烯烴類相對含量較高。相較于其余組,A35組發酵香腸含有較多醛類(15.66%),A21組發酵香腸中醇類、酯類相對含量較高,分別為15.75%和29.90%。
由表6可知,采用木糖葡萄球菌和副干酪乳桿菌組合發酵的A35和A21組發酵香腸含有更多的庚醛、1-辛烯-3-醇、乳酸乙酯、戊酸乙酯、癸酸乙酯、2-甲基丙酸乙酯等風味物質,清新味、甜香味、果香味和花香味更加濃郁[35-36],不但能夠形成已報道的乙酸乙酯、己酸乙酯等重要風味物質[37-38],還可以形成乳酸乙酯、戊酸乙酯、癸酸乙酯。B35、C35和B21、C21組也產生了己酸乙酯、丁酸甲酯、辛酸乙酯等酯類物質。占比較高的醛類、醇類以及種類較多的乳酸乙酯、戊酸乙酯、癸酸乙酯等酯類物質是A35、B21組發酵香腸總體可接受性較高的重要原因。這可能是由于腸體中的微生物和木糖葡萄球菌與副干酪乳桿菌利用肉中的脂肪和蛋白質產生酸類和醇類物質,且經過酯化反應形成具有特殊香氣的乳酸乙酯、戊酸乙酯、癸酸乙酯等酯類物質[7]。
3 結 論
相較于市售商業發酵劑,采用木糖葡萄球菌和副干酪乳桿菌組合發酵制作的發酵香腸總體可接受性相對較高,其色澤暗紅(L* 32.08±0.08、a* 14.14±0.15)、組織緊密、pH 5.57±0.02、水分含量(25.40±0.00)%、硬度較?。ǎ? 812.46±767.93) g)、咀嚼感較好,具有明顯的清新味、甜香味、果香味和花香味,且檢測到獨有的揮發性風味物質包括庚醛、1-辛烯-3-醇、乳酸乙酯、戊酸乙酯、癸酸乙酯、2-甲基丙酸乙酯等。另外,小直徑香腸的總體可接受性較高,是適宜發酵的香腸直徑大小。由此可知,木糖葡萄球菌與副干酪乳桿菌組合發酵的小直徑香腸食用品質最優,上述結果對于開發消費者喜好的新型發酵香腸具有一定的指導意義。
參考文獻:
[1] CORRAL S, SALVADOR A, BELLOCH C, et al. Effect of fat and salt reduction on the sensory quality of slow fermented sausages inoculated with Debaryomyces hansenii yeast[J]. Food Control, 2014, 45(3): 1-7. DOI:10.1016/j.foodcont.2014.04.013.
[2] SIDIRA M, GALANIS A, NIKOLAOU A, et al. Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages[J]. Food Control, 2014, 42(3):?315-320. DOI:10.1016/j.foodcont.2014.02.024.
[3] 劉蒙佳, 周強, 許美純, 等. 不同配料及發酵劑對發酵香腸品質特性的影響[J]. 中國調味品, 2018, 43(1): 17-25. DOI:10.3969/j.issn.1000-9973.2018.01.004.
[4] PARAMITHIOTIS S, DROSINOS E H, SOFOS J N, et al. Fermentation: microbiology and biochemistry[M]. New Jersey: Wiley-Blackwell, 2010. DOI:10.1002/9780813820897.ch9.
[5] BASSI D, PUGLISI E, COCCONCELLI P S. Comparing natural and selected starter cultures in meat and cheese fermentations[J]. Current Opinion in Food Science, 2015, 2: 118-122. DOI:10.1016/j.cofs.2015.03.002.
[6] FADDA S, L?PEZ C, VIGNOLO G. Role of lactic acid bacteria during meat conditioning and fermentation: peptides generated as sensorial and hygienic biomarkers[J]. Meat Science, 2010, 86(1):?66-79. DOI:10.1016/j.meatsci.2010.04.023.
[7] FERROCINO I, BELLIO A, GIORDANO M, et al. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages[J]. Applied and Environmental Microbiology, 2018, 84(3): e02120-17. DOI:10.1128/AEM.02120-17.
[8] BIS-SOUZA C V, BARBA F J, LORENZO J M, et al. New strategies for the development of innovative fermented meat products: a review regarding the incorporation of probiotics and dietary fibers[J]. Food Reviews International, 2019, 35(5): 467-484. DOI:10.1080/87559129.2019.1584816.
[9] FONSECA S, OUOBA L I I, FRANCO I, et al. Use of molecular methods to characterize the bacterial community and to monitor different native starter cultures throughout the ripening of Galician Chorizo[J]. Food Microbiology, 2013, 34(1): 215-226. DOI:10.1016/j.fm.2012.12.006.
[10] LEROY F, VUYST L D. Lactic acid bacteria as functional starter cultures for the food fermentation industry[J]. Trends in Food Science and Technology, 2004, 15(2): 67-78. DOI:10.1016/j.tifs.2003.09.004.
[11] RAVYST F, VUYST L D, LEROY F. Bacterial diversity and functionalities in food fermentations[J]. Engineering in Life Sciences, 2012, 12(4): 356-367. DOI:10.1002/elsc.201100119.
[12] SAMELIS J, STAVROPOULOS S, KAKOURI A, et al. Quantification and characterization of microbial population associated with naturally fermented Greek dry salami[J]. Food Microbiology, 1994, 11(6):?447-460. DOI:10.1006/fmic.1994.1050.
[13] PASINI F, SOGILA F, PETRACCI M, et al. Effect of fermentation with different lactic acid bacteria starter cultures on biogenic amine content and ripening patterns in dry fermented sausages[J]. Nutrients, 2018, 10(10): 1497. DOI:10.3390/nu10101497.
[14] ESSID I, HASSOUNA M. Effect of inoculation of selected Staphylococcus xylosus and Lactobacillus plantarum strains on biochemical, microbiological and textural characteristics of a Tunisian dry fermented sausage[J]. Food Control, 2013, 32(2): 707-714. DOI:10.1016/j.foodcont.2013.02.003.
[15] PAVLI F G, ARGYRI A A, CHORIANOPOULOS N G, et al. Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry-fermented sausages[J]. LWT-Food Science and Technology, 2019, 118: 108810. DOI:10.1016/j.lwt.2019.108810.
[16] WANG Xinhui, REN Hongyang, WANG Wei, et al. Effects of inoculation of commercial starter cultures on the quality and histamine accumulation in fermented sausages[J]. Journal of Food Science, 2015, 80(2): 377-384. DOI:10.1111/1750-3841.12765.
[17] BIS-SOUZA C V, PENNA A L B, BARRETTO A C D S. Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: in vitro screening and technological evaluation[J]. Meat Science, 2020, 168: 108186. DOI:10.1016/j.meatsci.2020.108186.
[18] COELHO S R, LIMA L A, MARTINS M L, et al. Application of Lactobacillus paracasei LPC02 and lactulose as a potential symbiotic system in the manufacture of dry-fermented sausage[J]. LWT-Food Science and Technology, 2019. DOI:10.1016/j.lwt.2018.12.045.
[19] BIS-SOUZA C V, PATEIRO M, RUB?N D, et al. Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón[J]. Meat Science, 2019, 159: 107936. DOI:10.1016/j.meatsci.2019.107936.
[20] NILSEN A, R?DBOTTEN M, PRUSA K, et al. Sensory analyses-general considerations[M]. 2nd ed. Oxford: Wiley-Blackwell, 2014: 189-194. DOI:10.1002/9781118522653.ch22.
[21] ?KRLEP M, ?ANDEK-POTOKAR M, BATOREK-LUKA? N, et al. Aromatic profile, physicochemical and sensory traits of dry-fermented sausages produced without nitrites using pork from Kr?kopolje pig reared in organic and conventional husbandry[J]. Animals, 2019, 9(2): 55. DOI:10.3390/ani9020055.
[22] 中華人民共和國國家衛生和計劃生育委員會. 食品安全國家標準 食品中水分的測定: GB 5009.3—2016[S]. 北京: 中國標準出版社, 2016: 1-2.
[23] P?REZ-ALVAREZ J A, SAYAS-BARBER? M E, FERN?NDEZ-L?PEZ J, et al. Physicochemical characteristics of Spanish-type dry-cured sausage[J]. Food Research International, 1999, 32(9): 599-607. DOI:10.1016/S0963-9969(99)00104-0.
[24] 中華人民共和國國家衛生和計劃生育委員會. 食品安全國家標準 食品中水分活度的測定: GB 5009.238—2016[S]. 北京: 中國標準出版社, 2016: 4-5.
[25] OLIVARES A, NAVARRO J L, SALVADOR A, et al. Sensory acceptability of slow fermented sausages based on fat content and ripening time[J]. Meat Science, 2010, 86(2): 251-257. DOI:10.1016/j.meatsci.2010.04.005.
[26] CORRAL S, SALVADOR A, FLORES M. Salt reduction in slow fermented sausages affects the generation of aroma active compounds[J]. Meat Science, 2013, 93(3): 776-785. DOI:10.1016/j.meatsci.2012.11.040.
[27] ERCOLINI D. Molecular techniques in the microbial ecology of fermented foods[M]. New York: Springer, 2008. DOI:10.1007/978-0-387-74520-6.
[28] 李儒仁, 鐘桂霞, 趙拎玉, 等. 市售西班牙自然發酵香腸的食用品質特征分析[J]. 肉類研究, 2020, 34(6): 64-71. DOI:10.7506/rlyj1001-8123-20200220-045.
[29] MONTANARI C, GATTO V, TORRIANI S, et al. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures[J]. Food Bioscience, 2017, 22: 9-18. DOI:10.1016/j.fbio.2017.12.013.
[30] TOLDR? F, HUI Y H. Dry-fermented sausages and ripened meats: an overview[M]. 2nd ed. Oxford: Wiley-Blackwell, 2014: 1-6. DOI:10.1002/9781118522653.ch1.
[31] STAJI? S, STANI?I? N, LEVI? S, et al. Physico-chemical characteristics and sensory quality of dry fermented sausages with flaxseed oil preparations[J]. Polish Journal of Food and Nutrition Sciences, 2018, 68(4): 367-375. DOI:10.2478/pjfns-2018-0006.
[32] XIAO Yaqing, LIU Yingnan, CHEN Conggui, et al. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages[J]. Food Research International, 2020, 135: 109247. DOI:10.1016/j.foodres.2020.109247.
[33] CHEN Jianshe. It is important differentiate sensory property from the material property[J]. Trends in Food Science and Technology, 2020, 96: 268-270. DOI:10.1016/j.tifs.2019.12.014.
[34] XU Yanshun, XIA Wenshui, YANG Fang, et al. Effect of fermentation temperature on the microbial and physicochemical properties of silver carp sausages inoculated with Pediococcus pentosaceus[J]. Food Chemistry, 2010, 118(3): 512-518. DOI:10.1016/j.foodchem.2009.05.008.
[35] MARCO A, NAVARRO J L, FLORES M. Quantification of selected odor-active constituents in dry fermented sausages prepared with different curing salts[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 3058-3065. DOI:10.1021/jf0631880.
[36] STAHNKE L H. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels. Part II. Volatile components[J]. Meat Science, 1995, 41(2): 193-209. DOI:10.1016/0309-1740(94)00069-J.
[37] BIS-SOUZA C V, PATERIO M, RUB?N D, et al. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides[J]. Journal of Food Science and Technology, 2019, 56: 5465-5473. DOI:10.1007/s13197-019-04018-8.
[38] ANDRACE M J, C?RDOBA J J, CASADO E M, et al. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”[J]. Meat Science, 2010, 85(2): 256-264. DOI:10.1016/j.meatsci.2010.01.009.