王憲磊,賈寶柱,王曉妍
(1.大連海事大學 輪機工程學院,遼寧 大連 116026;2.廣東海洋大學 海運學院,廣東 湛江 524088;3.大連海事大學 航運經濟與管理學院,遼寧 大連 116026)
隨著科研水平的提高及經濟發展的需要,新型集裝箱船都趨于大型化和高速化。目前,中高速集裝箱船面臨著如何既能提高-船速又能保證節能高效的問題。船舶的主推進裝置 螺旋槳來說,則成為船舶高速化和節能高效性發展的重點研發對象。因此,如何更有效提高螺旋槳的敞水性能和節能高效性能已經成為國內外眾多船舶水動力學專家的研究熱點,而作為特種船舶高速推進裝置的大側斜螺旋槳來說,當它的葉片的每個半徑切面不同時通過高伴流區,并憑借其側斜角較大的特殊結構導致由螺旋槳引起的軸承力和表面力特性減小。可以認為,螺旋槳的側斜結構是可以提高螺旋槳敞水性能及節能高效性的。因此,鑒于大側斜螺旋槳所具備的側斜分布特性,探究在螺旋槳的側斜分布對于其敞水性能以及節能高效性的影響對于發展高速節能型民用船舶有著重大意義。
近年來,國內外有很多專家學者對螺旋槳的水動力學模擬仿真實驗進行了研究:Tran Ngoc[1]以RANSE法為工具并對螺旋槳的敞水性能進行了數值模擬仿真實驗,計算結果與試驗值較為吻合;Sahoo P K[2]進行了CFD預測與推進器模擬,結果表明CFD方法對于螺旋槳的性能預報較為精確;Bennaya M[3]進行了非均勻入流下船舶螺旋槳誘導水動力周期力的CFD估算等研究,模擬仿真了非定常流場下的螺旋槳水動力實驗,表明CFD仿真實驗結果值與試驗值基本吻合;周斌等[4]對反旋向側斜導管螺旋槳進行了水動力學仿真模擬實驗,計算表明反旋向側斜螺旋槳在改善螺旋槳性能方面具備潛力;饒志強等[5]以七葉側斜螺旋槳為研究對象并對該槳的各項參數進行了優化處理,處理結果表明該槳進行了側斜分布優化后,螺旋槳效率比原槳高;任萬龍等[6]基于粒子群算法,以側斜分布作為優化變量,推力系數作為約束條件展開了螺旋槳優化設計的研究,研究結果表明螺旋槳的側斜分布將會一定程度上改善螺旋槳的敞水性能;張瑞等[7]研究了側斜分布對螺旋槳水動力特性的影響,以艇后螺旋槳為研究對象并對其水動力特性進行了水動力學數值模擬仿真實驗,結果表明當螺旋槳側斜角增加時,將導致螺旋槳軸系推力的振蕩波動得到明顯改善;蔡昊鵬等[8]以性能預報工具與智能尋優算法相結合的方法,采用算法優化的方式設計螺旋槳的側斜分布,表明經過該算法優化后的螺旋槳側斜分布將在螺旋槳的推進性能以及高效節能性能方面表現優異;曹峰等[9]以非定常流場下五葉側斜螺旋槳為研究對象并研究了其流固耦合特性,進而對該螺旋槳的敞水特性進行了水動力學模擬仿真實驗,結果表明仿真實驗結果與試驗結果基本一致,同時證明了CFD仿真方法的精確性和有效性。
以上研究內容表明近年來國內外水動力學方面的專家學者對于CFD仿真方法是否能夠用于準確預報螺旋槳的敞水性能這一問題進行了討論和研究,同時對于螺旋槳側斜分布問題的研究也表明螺旋槳的側斜分布對螺旋槳推進性能的改良具有一定影響。因此,本文首先對仿真實驗的精確性進行了驗證,將仿真結果與水池試驗結果進行對比分析后發現相差不大,因此可以認為本仿真實驗是具備可靠性的。然后通過3種不同的側斜分布(40°,50°,60°)螺旋槳的對比驗證探究螺旋槳的側斜分布對其敞水性能方面的影響,結果表明側斜角的增大有助于提高螺旋槳的推力以及效率。
在解決任何流體問題之前,首先要做的是對控制方程的建立。假定水流與螺旋槳的流動分析中沒有熱交換發生,則可直接將連續方程與動量方程作為控制方程使用。其連續性方程為:
其動量守恒方程為:
式中: ρ 為流體微體上的壓強;Fx,Fy和Fz為微元體上的體力。
本文的水動力學仿真實驗選擇計算精度較高且收斂速度較快的Realizablek- ε湍流模型。Realizablek-ε模型可用來計算有旋的均勻剪切流及管道內充分發展流動。因此,本文仿真實驗的湍流模型可以選擇Realizablek- ε湍流模型。Realizablek- ε模型的方程如下:
其中:
以Hassan Ghasseni研究的五葉大側斜螺旋槳為例,開展中高速集裝箱船高效推進器的設計研究。首先完成大側斜螺旋槳模型的建立,掌握了HSP-5的主要幾何參數,(如表1所示)。之后,通過幾何前處理軟件處理分析表1數據,并生成如圖1所示的五葉大側斜螺旋槳。
表1 五葉大側斜螺旋槳的主要參數Tab.1 Main dimensions of the propeller HSP-5
圖1 五葉大側斜螺旋槳三維模型Fig.1 Three-dimensional model of five-blade high skew propeller
由圖1可知,該槳運用型值表法,并通過Solid-Works建模軟件完成對五葉大側斜螺旋槳的三維模型。
針對螺旋槳的數值模擬方法有多種,鑒于仿真環境設定需求的區別可分為穩態方法的MRF、瞬態方法的RBM及OM。對于水動力仿真,存在2種流場的設定:定常流域和非定常流域。由于本文主要考察側斜槳和常規槳在仿真實驗中所能產生的推力值和扭矩值以及效率,因此采用MRF方法對所研究螺旋槳進行水動力學模擬仿真實驗即可。為了模擬螺旋槳在敞水中的運行,推進器應放置在較大的計算流域中,以減少邊界對螺旋槳流體動力學仿真結果的影響。但是,如果計算流域過大將會導致計算負擔加重,計算時間也將會延長。仿真實驗情況為螺旋槳處在靜止的流域,假設該流域中的水是有設定初速地從入口面進入并從出口面流出。根據相對運動原理,可用于模擬螺旋槳在流域中旋轉且前進的狀態。因此計算域分為2個部分,一部分是不包含螺旋槳的靜止計算域,另一部分是包含螺旋槳的旋轉計算域,其中靜止計算域模擬了均勻來流的行進情況,而旋轉計算域則模擬了螺旋槳的旋轉情況,Fluent中提供的MRF模型即多重參考系模型正是用來模擬相對旋轉及行進的仿真實驗,這樣設置的流域與實際情況是相符的。
計算坐標系設置在螺旋槳軸上的直角坐標系,坐標系原點為螺旋槳軸心,X軸正方向指向計算域的出口方向且與槳軸重合。內計算域進口距原點0.5R,且出口距原點0.5R;外計算域進口距內計算域進口為3R,且外計算域出口距內計算域出口為10R。整體計算域設置如圖2所示。
圖2 計算域設置Fig.2 Calculation domain settings
對于水動力仿真模擬來說,結果的質量如何在很大程度上取決于網格捕捉圍繞螺旋槳水流的特征有多成功。本文的模擬中,將為旋轉區域及其周圍使用切割體網格生成器網格模型,并使用拉伸網格網格生成器網格化軸周圍的靜態區域,這樣可以最大程度降低計算成本。
旋轉區域和四周靜態區域之間的交界面形狀為圓柱形。因此,本文采取讓交界面每一側的網格單元都互相垂直,即在交界面的任一側生成一個單棱柱層網格單元。如圖3所示,網格模型采用了切割體網格生成器、拉伸網格生成器、棱柱層網格生成器和表面重構,并將Base Size設為0.03 m,棱柱層厚度設為20%,棱柱層數設為5。此外,為了對螺旋槳周圍水流更加精確的捕捉,在旋轉域周圍設定了體積控制,Relative Size設為50%,0.015 m。如圖4所示,網格處理對螺旋槳的槳葉隨邊及導邊進行了特征線的控制,其中,Relative Minimum Size為 2% 且 Relative Target Size設為 5%。之后,分別對槳葉以及槳轂進行了網格尺寸的加密,有效提升了網格質量,最終生成如圖3所示的整體網格Cells值為 6 611 235,Faces值為 19 732 320,Vertices值為 7 064 064。
STAR-CCM+是一個完整的多物理場解決方案,它可以用于實際條件下工作的產品和設計,并通過STAR-CCM+仿真軟件實現了對五葉大側斜螺旋槳的數值模擬仿真。在Region中分別對旋轉域和靜止域中的Parts進行邊界條件的定義:首先,在旋轉域與靜止域之間建立交界面,確保初始條件的正常設置;然后,對靜止域中的進口Inlet設為速度進口,且速度幅值設為6.09 m/s,對靜止域的出口Outlet設為壓力出口,以及對靜止域的壁面Wall設為壁面,其余條件默認即可。最后,對旋轉域的螺旋槳設為壁面,并改變物理值中的運動規范為旋轉,旋轉速度為360 r/min,旋轉方向為(-1.0,0.0,0.0)。在連續體中的Physics設置為k-ε分離流、2層全y+壁面處理、定常、恒密度、雷諾平均納維-斯托克斯等,將其初始條件中速度設為(6.09,0.0,0.0)m/s,其余均默認即可。
圖3 整體網格 XZ 平面截圖Fig.3 Screenshot of XZ plane of overall grid
圖4 螺旋槳面網格Fig.4 Propeller surface grid
根據進速系數來設置均勻來流的速度,由公式
得,當J=0.7時,計算域進速度為6.09 m/s。
以360 r/min的轉速,分別進行J=0.3~0.9的仿真實驗,并將仿真結果與試驗結果進行對比分析,以此保證仿真的可靠性與精確性。仿真結果與水池試驗結果的對比如表2所示。
圖5為HSP-5五葉大側斜螺旋槳敞水性能曲線,且包含了仿真實驗結果與水池試驗結果的對比。可以看出:該槳的仿真試驗結果與水池試驗結果相差無幾,但對于推力系數曲線來說,在進速系數為0.3~0.5范圍內時,仿真結果比試驗結果略低;而進速系數為0.5~0.8范圍內時,仿真結果比試驗結果略高;在進速系數為0.8~0.9時,仿真結果又再次略低于試驗結果。對于扭矩系數曲線來說,在進速系數為0.3~0.55范圍內,仿真結果比試驗結果略低;在進速系數為0.55~0.9范圍內,仿真結果比試驗結果較高。效率曲線幾乎一致。
表2 五葉大側斜螺旋槳的敞水特性對比Tab.2 Comparison of open water characteristics of the HSP-5
圖5 五葉大側斜螺旋槳敞水性能曲線Fig.5 Open water performance curve of five-blade high skew propeller
以上對比實驗說明,模型尺度模擬與水池試驗數據基本吻合,誤差在4%左右。因此,認為仿真實驗具備可靠性和精確性。
后處理的目的是有效地觀察和分析流動計算結果。隨著計算機圖形功能的提高,通過后處理功能的動態模擬流動效果,直觀地分析仿真結果。對于五葉大側斜螺旋槳的仿真結果后處理分別是壓力標量圖、速度矢量圖以及等值線圖。當J=0.7時,大側斜螺旋槳的推力面和吸力面的壓力分布云圖如圖6和圖7所示,其速度矢量圖如圖8和圖9所示。
由圖6和圖7可知,推力面的壓力分布整體范圍上均比吸力面的壓力分布的值要大,且最大壓力為52 533 Pa以及最大負壓為(-1.7060e+05)Pa。由圖8和圖9可知,螺旋槳表面的速度從螺旋槳軸的中心到葉片的尖端逐漸增大,最大值在葉梢處生成,速度為27.332 m/s。
對于衍生零部件中等值面的標量場選擇為Q-Criterion,值為400.0/s2。編輯速度矢量圖后,大側斜螺旋槳的尾流跡線如圖10和圖11所示。尾流中存在內渦和外渦,并都趨于收斂狀態。
圖6 推力面壓力標量圖Fig.6 Scalar plot of thrust surface pressure
圖7 吸力面壓力標量圖Fig.7 Scalar plot of suction surface pressure
圖8 推力面速度矢量圖Fig.8 Velocity vector diagram of thrust surface
圖9 吸力面速度矢量圖Fig.9 Velocity vector diagram of suction surface
原型五葉大側斜螺旋槳側斜為55°,改變其側斜分布,選取側斜角分別為另40°,50°和60°,其他幾何參數與原型槳保持一致,得到如圖12所示的三個大側斜螺旋槳。仿真實驗設置均與原型槳仿真實驗相同,仿真結果如表3~表5所示。
圖10 螺旋槳尾流跡線圖Fig.10 Propeller wake trace diagram
圖11 尾流跡線斜視圖Fig.11 Oblique view of wake trace
可知,隨著側斜角度的增大,螺旋槳所能達到的推力系數以及扭矩系數也隨之增大,且效率也會隨之提高。側斜角度的增大可以被認為,在一定轉速下可為船舶航行提供更加強勁的推進性能,并且使船舶推進器更具備高效性。
本文探究大側斜螺旋槳的側斜分布對于其敞水性能的影響。在驗證仿真精確性后,進行3個側斜角分別為40°,50°和60°的大側斜螺旋槳的三維建模以及網格劃分并進行數值仿真模擬的研究。仿真結果顯示,隨著側斜角度的增大,對于螺旋槳的推進性能以及高效性能是有利的。因此,在民用船舶的高速性和高效節能性發展的船舶推進裝置螺旋槳的提升方面,螺旋槳的設計優化階段可以考慮增大螺旋槳的側斜角來提高其敞水性能和節能高效性能。然而,隨著側斜分布結構的應用,螺旋槳的槳葉部分以及槳葉葉根與槳榖交接處的加工難度和其鑄造成本也將相應增加。因此,對于螺旋槳的設計應結合螺旋槳幾何參數優化和加工成本及難度方面的影響因素,達到既能省時節約又能與船舶設計理念匹配,并滿足其高效的推進性能需求的目的。
圖12 不同側斜分布的大側斜螺旋槳三維圖Fig.12 Three-dimensional view of high skew propeller with different skew distribution
表3 40°側斜角五葉大側斜螺旋槳的水動力性能Tab.3 Hydrodynamic performance of the HSP-5 propeller(40°)
表4 50°側斜角五葉大側斜螺旋槳的水動力性能Tab.4 Hydrodynamic performance of the HSP-5 propeller(50°)
表5 60°側斜角五葉大側斜螺旋槳的水動力性能Tab.5 Hydrodynamic performance of the HSP-5 propeller(60°)