999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

LOWER BOUND FOR THE BLOW-UP TIME OF THE SOLUTION TO A QUASI-LINEAR PARABOLIC PROBLEM

2021-03-19 06:51:16BAOAiguoWUGuorong
數(shù)學(xué)雜志 2021年2期

BAO Ai-guo,WU Guo-rong

(Department of Mathematics and Statistics,School of Science,Inner Mongolia Agricultural University,Inner Mongolia Huhhot 010018 China)

Abstract:In this paper,using a delicate application of general Sobolev inequality,we establish the lower bound for the blow-up time of the solution to a quasi-linear parabolic problem,which improves the result of Theorem 2.1,Theorem 3.1 in[1],and the model(4.1)in[2].

Keywords:Quasi-linear parabolic equation;Initial-boundary value problem;lower bound for blow-up time

1 Introduction

In this paper,we will establish the lower bound for the blow-up time of the solution to the following problems:

Herea>0,m>1,p≥0 andq≥0,??Rn(n≥3)is a smooth bounded domain,νis the outward norm vector.The initial datau0(x)is a continuous nonnegative function and satisfies the compatible conditions.In[3],LI and XIE proved that the solution to(1.1)exists globally ifp+qmand the initial datau0(x)is sufficiently large.

The direct motivation of this paper comes from the papers[1]and[2].In[1],the authors estimated the lower bounds for the blow-up time of solution to(1.1)subject to Dirichlet boundary condition and Neumann boundary condition in 3-dimension space.In[2],the authors only established the lower bounds for the blow-up time of the solution to(1.1)subject to Dirichlet boundary condition with smooth bounded ??Rnandn≥3.Naturally,we hope to obtain the lower bound for the blow-up time of the solution to(1.1)subject to Dirichlet boundary condition and Neumann boundary condition with smooth bounded ??Rnandn≥3.Inspired by Payne-Schaefer’s idea and following the AN and SONG’s methods in[4],we will use a delicate application of general Sobolev inequality to deal with both(1.1)subject to Neumann boundary condition and(1.1)subject to Dirichlet boundary condition.There are many results about the estimates of the lower bounds for blow-up time of the solution to parabolic equation.We can refer to[5-13]and the references therein to get more information.

Our main result in this paper can be stated as follows:

Theorem 1.1Assume thatuis the blow-up solution of(1.1),which will blow-up at timet=t?.Then the lower bound for the blow-up time of the solution is

We will give the details to proof of Theorem 1.1 in the next section.

2 Lower Bound for the Blow-Up Time

In this section,using a delicate application of general Sobolev inequality,we will establish the lower bound for the blow-up time of the solution to(1.1).

Proof of Theorem 1.1.define

主站蜘蛛池模板: 成人免费视频一区| 欧美成人aⅴ| 亚洲欧美一级一级a| 国产三级精品三级在线观看| 免费看一级毛片波多结衣| 女人毛片a级大学毛片免费| 欧美日韩北条麻妃一区二区| 久久人人妻人人爽人人卡片av| 亚洲第一天堂无码专区| 亚洲成人网在线播放| 97视频免费看| 国产一区二区福利| 婷婷开心中文字幕| 国产精品一区在线麻豆| 成人一级免费视频| 国产成人精品亚洲日本对白优播| 亚洲中久无码永久在线观看软件| 久久久久久久蜜桃| 找国产毛片看| 日韩国产亚洲一区二区在线观看| 这里只有精品免费视频| 欧美亚洲欧美| 精品天海翼一区二区| 99热这里都是国产精品| 嫩草国产在线| 91精品专区国产盗摄| 成年人免费国产视频| 91精品国产一区自在线拍| 午夜毛片免费观看视频 | 日本一区高清| 天堂中文在线资源| 亚洲日韩高清在线亚洲专区| 亚洲天堂视频网站| 在线播放国产99re| 99久久精品免费看国产免费软件| 色婷婷在线影院| 国产91丝袜在线播放动漫| 国产精品视频久| 久久精品国产亚洲麻豆| 亚洲人妖在线| 欧美一级特黄aaaaaa在线看片| 日韩欧美中文亚洲高清在线| 手机在线国产精品| 亚洲国产成人在线| 中文字幕无码av专区久久| 性视频一区| 制服丝袜一区| 尤物精品视频一区二区三区| 国产精品午夜电影| 在线观看国产一区二区三区99| 久久女人网| 国产女人在线| 老色鬼久久亚洲AV综合| 成年人国产视频| 亚洲精品国产乱码不卡| 一级一级一片免费| 免费xxxxx在线观看网站| AV不卡无码免费一区二区三区| 亚洲欧洲日韩综合| 中国黄色一级视频| 在线视频亚洲色图| 亚洲无码日韩一区| 日韩成人午夜| 色综合网址| Aⅴ无码专区在线观看| 色网站免费在线观看| 国产一区二区精品高清在线观看 | 精品国产免费观看一区| 色亚洲成人| 国产亚洲现在一区二区中文| 波多野结衣一区二区三区四区视频| 91久久夜色精品国产网站| 一级成人欧美一区在线观看| 免费播放毛片| 国产爽歪歪免费视频在线观看| 亚洲成a人片在线观看88| 国产精品流白浆在线观看| 黄色一级视频欧美| 色视频国产| 国产精品流白浆在线观看| 亚洲成AV人手机在线观看网站| 在线欧美a|