李方柯 鄒孔慶 王冰
(1.中鐵第五勘察設計院集團有限公司,北京 102600;2.中鐵四局集團鋼結構建筑有限公司,合肥 230022)
新洋港斜拉橋位于鹽城市亭湖區通榆河和新洋港交口位置,設計采用(72+96+312+96+72)m 雙塔雙索面連續鋼桁斜拉橋,是徐州至鹽城高速鐵路的全線控制性工程[1]。結構采用帶縱向阻尼約束的半漂浮體系;主梁采用雙主桁、三角形桁式,節間距12 m,桁高14 m,主桁中心距15 m,主桁采用焊接整體節點形式,桿件與節點之間采用高強度螺栓連接;橋面系采用正交異性鋼橋面;橋塔采用129 m 高的花瓶形結構,單塔每側設12對拉索。大橋立面布置如圖1所示。

圖1 大橋立面布置(單位:m)
新洋港斜拉橋的基礎和橋塔采用常規方法施工,鋼桁梁采用散拼法施工。為保證施工過程中結構的抗風穩定性,采用支架單向懸拼的方案(圖2),先在承重支架上安裝邊跨和次邊跨鋼梁,再利用2 臺70 t 全回轉架梁吊機單向懸拼架設主跨鋼梁,并掛設斜拉索,主梁在中跨跨中實現強制合龍[2]。

圖2 支架單向懸拼法架設
斜拉橋施工控制的根本目的是對結構實際狀態和理想狀態的差異進行判別和修正,從而保證施工過程安全可控,使成橋結構線形和內力狀態逼近設計理想狀態。鐵路鋼桁梁斜拉橋的二期恒載和活載占比較大,施工過程中主梁內力通常不控制設計,主要通過控制線形以保證主梁順利合龍。高速列車通行對橋面平順度要求較高,在成橋狀態控制主梁線形以滿足列車通行需求更為重要。因此,有別于傳統斜拉橋“線形內力雙控”理念,鐵路鋼桁梁斜拉橋的施工控制宜采用線形控制為主、內力控制為輔的原則。
斜拉橋施工控制以自適應控制法為主[3],通過參數修正使理論計算模型更接近結構實際情況,從而對結構的真實狀態進行判斷和控制。
斜拉橋施工控制的核心在于處理結構實際狀態與理論狀態的偏差。產生偏差的原因包括:結構實際參數和設計參數存在差異、計算模型簡化導致的結構力學行為和實際情況不一致、結構制造和安裝誤差、施工監測誤差等。
新洋港斜拉橋采用自適應控制法消除參數誤差,鋼桁梁采用幾何控制法[4-5]降低監測誤差。但栓接鋼桁梁的線形在桿件制造完成后已基本確定,后期安裝標高調整量很小,鋼梁的制造和拼裝誤差、仿真分析誤差等造成的鋼梁線形偏差只能通過斜拉索索力來調整。由于鋼桁梁斜拉橋的索力線形敏感度相對較低,為保證鋼梁線形,斜拉索索力可能出現較大的偏差。因此,新洋港斜拉橋施工控制在基于自適應控制的基礎上,采用“線形精確控制+索力近似控制”的方法。
新洋港斜拉橋施工監控計算基于無應力狀態法[6-7],采用三維空間有限元分析軟件MIDAS 和TDV進行監控計算。橋塔、鋼桁梁桿件等結構采用梁單元模擬,鐵路正交異性鋼橋面板采用板單元模擬,斜拉索采用索單元模擬,全橋按實際施工過程考慮幾何非線性進行分析。
橋塔采用預埋式應變計進行應力、溫度監測,塔柱采用棱鏡進行位移監測;鋼桁梁采用外貼式應變計進行應力和溫度監測,采用全站儀和電子水準儀進行線形監測;斜拉索采用頻譜式索力計監測索力。應變計采用自動化數據采集與分析。
根據成橋線形、受力狀態確定合理的結構制造及安裝線形是斜拉橋施工控制的前提。傳統方法一般根據施工階段模擬計算確定從制造到成橋過程中結構的幾何變位,然后采取各種方式加以幾何補償。目前,大跨度斜拉橋多采用無應力狀態法確定構件的制造和安裝線形,即根據成橋狀態確定構件的無應力長度、無應力曲率、相對幾何關系等參數,再輔以施工過程控制,最后達到預定的成橋狀態。傳統方法原理清晰、操作簡便,對于大跨度橋梁則會出現較大的誤差。控制構件的制造尺寸和幾何關系對于超大跨度斜拉橋適應性較好,但過程繁瑣,特別是幾何控制量和制造、安裝精度相近時則難以控制。因此,對于實際結構應綜合幾何控制參數、施工便利性等條件確定合理的線形控制方案。
新洋港斜拉橋鋼梁按水平設計,各跨按1/2 靜活載撓度設置預拱度,并通過橋面道砟進行豎曲線擬合,最終形成0.44‰的人字坡(圖3)。主跨設143 mm預拱度,其中92 mm 通過調整上弦節點間距實現,51 mm通過張拉斜拉索實現。

圖3 鋼梁成橋線形布置(單位:m)
根據監控結果計算得到鋼梁梁端壓縮量約為50 mm,各桿件的無應力長度比設計長度僅多出1~3 mm,與桿件制造誤差在同一量級,控制幾何尺寸較為困難。按無應力長度和桿件間無應力幾何關系控制時,桿件拼接、腹板傾角、平聯及橫聯角度均有較小的調整,不僅增加了制造復雜度,還會影響后期線形控制的判斷。因此,該橋梁制造線形采用按設計長度制造+局部幾何補償的方法比較合理。因橋塔處設置了鋼梁縱向頂推裝置,鋼梁選用強制合龍方案;考慮到梁端壓縮值相對較小,鋼梁最終采用梁端補償的方案。
新洋港斜拉橋橋塔采用花瓶形混凝土塔,采用爬模分段現澆施工。橋塔線形控制按2 階段計算、一次性補償考慮。第1 階段:計算橋塔施工階段自重和收縮徐變引起的豎向變形、橫向變形。第2階段:計算斜拉索張拉和后期收縮徐變引起的豎向變形、橫向變形。疊加2 階段橋塔變形作為塔柱初始施工的預偏值,同時考慮橋塔上墊石以及斜拉索錨點的預抬量。斜拉索直接按照無應力狀態法進行加工和控制。
綜上所述,該橋施工控制最終采用無應力狀態法+幾何補償法的方式來確定結構構件的制造和安裝線形。線形監測結果表明,采用該方法成橋后梁、塔線形與理論線形吻合良好,各項線形誤差均小于規范限值。
新洋港斜拉橋鋼梁采用單懸臂拼裝,鋼梁懸拼線形控制總體采用自適應控制原理,根據鋼梁架設過程中的實際線形對計算模型進行不斷修正,但模型修正無法消除計算模型簡化誤差和鋼梁制造安裝誤差。新洋港斜拉橋鋼梁前6 個節段的模型修正結果顯示,僅調整主梁自重和斜拉索彈性模量2項對鋼梁線形最敏感的參數,鋼梁的理論線形和實際線形難以吻合。
考慮鋼梁懸拼的首要目的是保證線形,實現合龍,所以允許斜拉索索力出現一定偏差。針對本橋提出了模型修正和索力調整相結合的控制方式:①對鋼梁拼裝施工過程進行計算,分析各斜拉索張拉對當前階段梁端位移及合龍口位移的影響,引入索力敏感性參數β;②根據前3個懸拼節段線形修正計算模型關鍵參數,此時鋼梁制造誤差和拼裝累積誤差較小,模型修正效果較好;③在其后的3個懸拼節段施工過程中,根據索力敏感性分析結果調整索力,保證實際線形和理論線形一致。同時根據實際索力和鋼梁變形對索力敏感性參數β進行修正。④此后每拼裝3 個鋼梁節段,對索力敏感性參數β再進行一次修正。
按照上述步驟建立鋼梁懸拼線形與索力控制數據系統,對鋼梁懸拼過程實時控制。實際施工情況表明,鋼梁合龍前梁端高程和理論值差值小于5 mm,現場僅通過小幅調整中跨尾索就能實現鋼梁合龍。
斜拉索的拔出量指索力在一定變化范圍內,斜拉索的張拉伸長值(張拉端的拔出量)。斜拉索的拔出量主要有以下特點:①斜拉索在自重作用下會產生一定的垂度,索力增大時斜拉索的拔出量包括彈性伸長量以及克服垂度導致的伸長量;②由于斜拉橋為柔性體系結構,在斜拉索張拉過程中,塔端和梁端的錨點會產生一定的位移,影響斜拉索的拔出量;③斜拉索在自然狀態下會產生一定的彎曲的扭轉,在索力相對較小的區段內,索力變化值和索長變化值呈現強烈的非線性關系。因此,斜拉索的拔出量不僅與索的自重、彈性模量等參數有關,還與索力、索長、索的垂度、結構體系剛度等密切相關。分析和控制拉索的拔出量不僅是對其物理參數的校核,也可對結構的剛度進行驗證。
分析索拔出量理論值時,初始索長通常按斜拉索在無自重作用下自由安裝時的索長考慮(即無應力索長),即斜拉索安裝前梁、塔端錨點的直線距離(圖4(a));最終索長按拉索張拉完成狀態計算(圖4(b)),此時斜拉索承受自重和張拉力F,塔端、梁端錨固點分別產生豎向變位ω1,ω2和水平變位υ1,υ2。索的理論拔出量=斜拉索的最終無應力索長-初始索長。
斜拉索張拉拉過程(圖5)包括:①機動位移階段。該階段張拉力保持不變,索在張拉力作用下產生剛體位移,索的支承狀態逐步由多點彈性支承轉變為錨點支承;②垂度抵抗階段。該階段張拉力逐漸增大,索的拔出量不斷增加,拔出量中以抵抗垂度產生的變形量為主;③彈性伸長階段。該階段張拉力進一步增大,索的拔出量不斷增加,拔出量中以索的彈性伸長量為主。

圖5 斜拉索實際張拉階段
從斜拉索的實際張拉過程可以看到,其理想的初始狀態(圖4(a))并不存在,只有當張拉力達到一定程度時,其實際狀態才與理想狀態相對應。理論上應先根據錨固點坐標確定拉索的初始無應力索長,對斜拉索提前標記,待張拉完成后再次標記,將2次標記點的差值作為實測拔出量。由于實際的索錨點幾何位置與理論存在偏差,且斜拉索制造先于錨點成型,斜拉索的初始標記可能存在較大誤差,因此實際施工時一般不采用該方法。
基于斜拉索的實際張拉階段和工作特性,提出2種方法對斜拉索拔出量的實測值和理論值進行對比:①零點彈性伸長對比。以斜拉索自由安裝(計自重)變形后的索端拉力作為零點索力,以零點索力作為拉索張拉的垂度抵抗階段和彈性伸長階段的界限,假定后期拉索伸長量均為彈性伸長量。拉索拔出量校核僅考慮零點索力至初張力范圍。②等效彈性伸長對比。考慮索力相對較大時,斜拉索基本已克服了垂度變形和彎曲扭轉變形,其伸長量基本為彈性伸長量。斜拉索拔出量實測值采用張拉后幾級的伸長量作等效替換,并與理論值進行對比。
以新洋港斜拉橋北岸側1031#橋塔1~4 號索為例,按上述2 種方法對拉索拔出量進行驗證,見表1。其中,S1′為邊跨1 號索,S1 為中跨1 號索,-1 為東側索,-2 為西側索。實際拉索按初張力分5 級張拉,第1級直接張拉至理論零點索力,等效彈性伸長對比時采用后3 級伸長量等效替換得到的實際拔出量。由表1可知,斜拉索實際拔出量和理論值誤差均在6%以內,驗證了斜拉索彈性模量和理論值相符,結構整體剛度與理論值接近。表明按照零點索力法或等效彈性法進行斜拉索初張拉拔出量校核可靠。
對于鐵路鋼桁梁斜拉橋,二次調索的目的是保證鋼梁線形和設計線形盡量一致,并使斜拉索索力接近設計值。一般采用調整拉索拔出量的方法進行二次調索。由于斜拉索的實際長度與結構實際剛度、施工誤差、溫度、張拉力等諸多因素相關,因此采用相對調整法進行二次調索。

表1 斜拉索初張拉拔出量對比
按照二次調索前后的計算模型即可確定斜拉索拔出量。斜拉索在調索前后的狀態如圖6 所示。其中,A,B,C,D 為錨固點,DE 段為張拉拔出段,調索前后索力分別為F1,F2。令AB 段、CD 段、DE 段的無應力長度分別為L1,L2,L0,DE 段實際長度為ΔL。考慮溫度T,線膨脹系數α,斜拉索的彈性模量E和面積A。根據無應力長度不變原則,忽略DE 段垂度影響可以得到ΔL=(L1-L2)[1+F2/(EA)+αT]。

圖6 斜拉索張拉前后狀態
根據斜拉索實際工作參數F2=5000 kN,T=30 ℃,E=195 GPa,A=13431 mm2,α=1.2×10-5計算得到F2/(EA)+αT=0.00226,該項可忽略。因此,二次調索拔出量計算公式可簡化為ΔL=L1-L2。理論上僅需要計算出二次調索前后模型各斜拉索的無應力長度即可。
根據鋼梁懸拼線形控制結果可知,鋼梁合龍后其線形與理論線形基本相同,但索力實測值和理論值不符,且不成比例。為避免成橋后斜拉索索力出現較大偏差,應基于實際情況采用相對調整法進行二次調索。由于二次調索與索力絕對值無關,決定鋼梁線形達到理想線形的指標是索力的變化量,即張拉拔出(Fn為第m根斜拉索的索力)和鋼梁線形差方和量。因此,以斜拉索索力差方和2(Hn為第n個鋼梁控制點的高程)最小作為控制指標,對調索前模型進行調整,使索力理論值接近實測值。結合調索前后模型即可確定各斜拉索的二次調索拔出量。
二次調索后鋼梁東、西側各控制點高程實測值和理論值的差值見圖7,1031#墩斜拉索索力實測值和理論值見圖8。可知,鋼梁實際線形和理論線形吻合良好,高程誤差基本在20 mm 以內;斜拉索索力實測值與理論值吻合較好,實際索力約為理論值的1.08 倍,差值主要由鋼梁預拱方法以及制造和拼裝誤差引起。實測結果表明鋼梁線形、斜拉索索力均滿足設計要求。

圖7 鋼梁高程實測值與理論值的差值

圖8 1031#墩斜拉索索力實測值與理論值
鐵路斜拉橋在列車通行時將產生較大的豎向位移,應設置預拱度以保證線路的平順性。傳統方法是按照恒載+1/2 靜活載的撓度曲線設置預拱度。鐵路客車、貨車設計荷載分別為64(ZK),85 kN/m(ZKH),而實際運營荷載僅為28,66 kN/m,且按傳統方法設置預拱度會導致線路不平順。因此,預拱度設置時應結合實際活載考慮。
對于鋼桁梁斜拉橋的成橋線形,若按主梁水平設計在各跨分別設置預拱度,則預拱度曲線在支點處會出現不連續的情況,成橋后還需要對軌道線形進行擬合。該傳統方法僅適用于有砟軌道。預拱度的設置受預拱方法、施工誤差影響,控制困難。同時,鋼梁成橋線形受溫度影響較大,成橋后軌道線形擬合困難,易出現成橋軌道線形和設計軌道線形不一致的情況[8]。設計時可根據鋼梁預拱度將線路局部調整為人字坡,鋼梁直接按照實際人字坡線形進行設計和制造。
除制造和拼裝誤差外,鋼桁梁的拼裝工藝和預拱度設置方法是影響鋼梁線形控制的主要因素。鋼桁梁的拼裝工藝主要有焊接和栓接2 種,新洋港斜拉橋鋼梁均采用栓接連接,施工時采用散拼的方式。由于桿件栓接拼裝時可能繞節點轉動,會造成拼裝線形誤差并逐步累積。因此,在施工條件允許的情況下,鋼桁梁宜采用整節段先焊接后拼裝或多節段先焊接后拼裝的工藝,便于施工線形控制。
鋼桁梁的預拱度成形方法主要有調整上弦節點間距尺寸、張拉斜拉索起拱、調整鋼梁制造線形等。調整上弦節點間距尺寸是實現鋼桁梁預拱的傳統方法,但調整尺寸一般較小,鋼桁梁的節點剛域難以準確考慮[9-10],線形控制困難。張拉斜拉索起拱會增大索力,邊跨壓重也需增加,一般僅適用于對斜拉索剛度需求高且壓重便利(或不需壓重)的鋼箱混合梁斜拉橋。調整鋼梁制造線形的方法更有利于鋼桁梁的線形控制。考慮鋼梁的制造、拼裝誤差等,采用調整鋼梁制造線形為主、張拉斜拉索起拱為輔的方案較為合理,且鋼桁梁邊跨壓重應具備足夠的富裕度。
從鋼梁線形的敏感性分析來看,鋼梁自重是主要影響因素,斜拉索剛度是次要影響因素。對于鋼桁梁斜拉橋,索力變化對鋼梁線形的敏感度相對較低,當自重、二期恒載出現偏差或制造、拼裝誤差導致鋼梁實際線形和設計不一致時,需要調整的索力較大。因此,鋼桁梁斜拉橋設計時斜拉索宜留有足夠的富裕度,以保證成橋后斜拉索的強度安全系數滿足規范要求。
1)基于自適應控制原理,采用“線形精確控制+索力近似控制”的原則。施工控制采用無應力狀態法+幾何補償法的方式確定結構構件的制造和安裝線形。鋼梁懸拼線形采用線形精確控制+索力近似控制的方式,有效保證了鋼梁合龍線形。
2)采用零點索力法或等效彈性法在斜拉索初張拉階段實現了索力和拔出量雙控,能夠及時發現斜拉索及其相關設備的質量問題,是斜拉索施工控制的重要手段。
3)采用無應力狀態法結合實際索力進行二次調索,在保證成橋線形的基礎上,各斜拉索索力應盡可能逼近設計成橋索力。
4)對于鐵路鋼桁梁斜拉橋,設計預拱度宜結合實際活載設置,采用人字坡線路來擬合鋼梁預拱度。預拱度設置宜采用調整鋼梁制造線形為主、張拉斜拉索起拱為輔的方案。為保證成橋鋼梁線形,設計時斜拉索宜留有足夠的富裕度來消除各項誤差。
新洋港斜拉橋于2016年3月開工建設,2018年8月鋼桁梁順利合龍,2019年12月正式通車運營。大橋實測線形、內力狀態良好,達到了設計的理想狀態。