劉佳露,張鳳君,彭新晶
非均相活化劑磁性納米CoFe2O4的制備及其活性評價
劉佳露1*,張鳳君2,彭新晶3
(1.中核武漢核電運行技術股份有限公司,湖北 武漢 430223;2.吉林大學地下水資源與環境教育部重點實驗室,吉林 長春 130021;3.沈陽化工大學環境與安全工程學院,遼寧 沈陽 110142)
采用溶膠-凝膠法制備了磁性納米鐵酸鈷(CoFe2O4)固體顆粒,并采用掃描電鏡(SEM),X射線衍射儀(XRD),傅里葉變換紅外光譜儀(FT-IR)和振動樣品磁強計對樣品進行表征分析.以磁性納米CoFe2O4顆粒活化過硫酸鹽氧化去除水中四環素為探針反應,評價CoFe2O4顆粒的活化性能.結果表明,600℃焙燒溫度下制備出的固體顆粒,其活性較高,顆粒表面金屬離子浸出率較低;優化溫度下制備的CoFe2O4顆粒在較寬的pH值范圍(4.4~9.0)內均具有較高活性;控制實驗條件PDS01g/L,CoFe2O41g/L,TCH050mg/L,20℃,pH04.4,反應4h后TCH去除率達到82.0%.CoFe2O4顆粒循環重復利用10次后仍保持較高的活性和結構穩定性,而且因其特殊的磁性能便于回收利用.
非均相活化;硫酸根自由基;磁性納米CoFe2O4顆粒;重復循環利用;四環素
基于硫酸根自由基的新型高級氧化技術(SR- AOPs)在處理難降解有機廢水方面具有十分可觀的應用前景.過硫酸鹽常溫下比較穩定,但在某些特定條件下被激活產生強氧化性硫酸根自由基(SO4·-,氧化還原電位2.5~3.1V),理論上能夠氧化降解大部分有機污染物[1-4].常見的活化方式有過渡金屬離子(Fe2+、Co2+、Ag+等)活化[2,4-10],熱活化[11-17],紫外光照射活化[18-23]等.均相過渡金屬離子活化過硫酸鹽體系,常溫常壓下簡單操作即可得顯著效果,因而應用最廣泛,但均相體系也存在一些弊端[24-26]: (1)均相體系中低價態金屬離子如Fe2+易被迅速氧化從而喪失活性導致其利用率低,過量投加又會產生大量鐵污泥;(2)均相體系中金屬離子在中性和堿性條件下易沉淀從而降低活化效率,限制了體系pH值應用范圍;(3)均相體系反應后殘留溶液中金屬離子濃度過高,活化劑流失且難以回收利用,對環境造成二次污染.雖然制備固體活化劑將研究重點轉移至非均相體系能夠應對均相體系的一些弊端,但常規活化劑固體顆粒仍然存在流失嚴重且難以回收的問題,而且隨著反應時間的延長其自身結構穩定性容易被破壞進而無法保證高效的活性.針對以上問題,本文以軟磁性物質CoFe2O4為切入點,制備了具有一定磁性的納米CoFe2O4顆粒,利用其磁性能解決活化劑流失及難以回收的難題;以活化過硫酸鹽體系中四環素(TCH)的氧化去除為探針反應,研究非均相磁性納米CoFe2O4顆粒的活性,以期擴寬其pH值應用范圍;最后,將活化劑顆粒進行重復利用,考察其活化性能的穩定性及其自身結構穩定性.
實驗儀器:電子天平(上海舜宇恒平FA1004型),恒溫水浴裝置(上海標本76-Sa型),機械攪裝置(上海標本JB90-SH型),電熱鼓風干燥箱(北京永光明101-E型),程序升溫馬弗爐(合肥科晶KSL-1200X型),紫外可見分光光度計(上海舜宇恒平752型),原子吸收分光光度計(日本島津AA-6300C型),pH計(美國奧豪斯STARTER 3100型),超聲波清洗機(昆山超聲KQ5200DE型),真空干燥箱(上海博迅DZF-6050型).
實驗試劑:過二硫酸鈉(PDS,Na2S2O8),鹽酸四環素(TCH,C22H24N2O8·HCl),硝酸鈷(Co(NO3)2·6H2O),硝酸鐵(Fe(NO3)3·9H2O),檸檬酸(CA,C6H8O7·H2O),氫氧化鈉(NaOH),濃硫酸(H2SO4),濃鹽酸(HCl)均為分析純;實驗用水均采用超純水.
以檸檬酸(CA)絡合金屬離子的機理,采用溶膠-凝膠法[9,27-29]制備磁性納米CoFe2O4顆粒.首先,稱取定量的硝酸鈷和硝酸鐵于燒杯中,加入超純水混合均勻,保證混合溶液中鈷離子和鐵離子的物質的量比為1:2;其次,將裝有混合溶液的燒杯放入60℃水浴中劇烈攪拌2h;接著,加入定量CA,保證其物質的量濃度等同于金屬離子物質的量濃度之和,繼續在60℃水浴中劇烈攪拌2h;然后,將所得透明溶膠轉入90℃恒溫干燥箱中,數小時后得到蜂窩狀的前驅物;最后,將前驅物研磨成粉體,置于陶瓷坩堝中,于馬弗爐中特定溫度下焙燒2h,即得活化劑顆粒樣品.
采用荷蘭FEI XL-30掃描電子顯微鏡(SEM)分析測定固體樣品的表面形貌和顆粒分布狀態.采用北京普析XD6X射線衍射儀(XRD)表征分析固體樣品的物相組成.采用美國Nicolet 500傅里葉變換紅外光譜儀(FT-IR)對固體樣品的官能團進行分析.采用美國LakeShore 7410VSM振動樣品磁強計測定固體樣品的H-M磁滯回線,分析其磁性能.
以活化過硫酸鹽體系中TCH的氧化去除為探針反應,評價固體顆粒的活性,實驗裝置如圖1所示.首先,向300mL圓柱形玻璃容器中加入一定濃度的TCH溶液;其次,將玻璃容器放入20℃恒溫水浴裝置中,300r/min攪拌混勻,測定TCH濃度作為初始值;然后,向反應器中加入定量磁性納米CoFe2O4顆粒和定量PDS溶液,計時開始,每隔一定時間取樣,立即用0.22 μm微孔濾膜過濾并用紫外分光光度計于358nm波長處測定濾液中TCH濃度[3](5~50mg/L濃度范圍內的TCH溶液對吸光度值的線性擬合系數高達0.999).考察溶液初始pH值(pH0)影響時,用0.01mol/L H2SO4溶液和0.1mol/L NaOH溶液調節溶液pH值;如無特殊說明,其它實驗均未調pH值.實驗中50mg/L TCH溶液的自然pH值約為4.4.每組實驗至少設置3個平行實驗,結果取平均值.

圖1 實驗裝置
為了考察活化劑顆粒的穩定性,采用原子吸收分光光度法對顆粒中的Fe/Co浸出量進行測定分析,并進行循環重復利用實驗.
重復利用實驗中,活化劑顆粒的清洗方法為:上一批次實驗反應后,用磁鐵將顆粒溶液進行固液分離,收集固體顆粒并將其浸沒在定量超純水中邊攪拌邊超聲進行清洗,然后靜置磁分離,測定上清液中TCH濃度;反復清洗直至上清液中檢測不到TCH含量,之后將磁分離后的顆粒60℃真空干燥處理,干燥后的顆粒經研磨后進入下一批次重復反應過程.
2.1.1 活化劑顆粒樣品的物相分析(XRD) 采用溶膠-凝膠法在不同焙燒溫度(300~800℃)下制備了一系列活化劑顆粒,其XRD圖譜如圖2所示.活化劑樣品的特征峰出現在衍射角2為18.3°, 30.1°, 35.4°, 37.1°, 43.1°, 53.4°, 56.9°, 62.6°, 74.0°和75.0°處,分別對應尖晶石型CoFe2O4的(111), (220), (311), (222), (400), (422), (511), (440), (620)和(533)晶面(標準卡片JCPDS:22-1086)[28].300℃樣品的XRD圖譜相應特征峰不明顯,表明活化劑結晶較差,CoFe2O4成型較差;隨著焙燒溫度(400~800℃)的升高,特征峰變明顯且更強更窄,活化劑結晶性提高,CoFe2O4成型較好.除300℃外,其它溫度下活化劑樣品XRD圖譜與標準卡片JCPDS:22-1086(Cobalt iron oxide CoFe2O4)相符合,且無其它雜峰,表明成功制備出了CoFe2O4,且純度較高.

圖2 不同焙燒溫度下活化劑的XRD圖譜
2.1.2 焙燒溫度對活性和穩定性的影響 將活化劑顆粒添加至活化PDS反應體系中,分析TCH去除率來考察固體顆粒的活性,分析固體顆粒中金屬離子溶出量來考察固體顆粒的穩定性.實驗條件為PDS投加量(PDS0)0.5g/L,CoFe2O4投加量1g/L,TCH初始濃度(TCH0)50mg/L.
將不同焙燒溫度(300~800℃)下制備的一系列活化劑顆粒投加至PDS體系中,液相中TCH的去除情況見圖3a.300~500℃焙燒溫度下制備的活化劑在PDS體系中對TCH的去除效果明顯高于600~800℃系列活化劑,這可能得益于其對TCH的吸附性能(圖4).如圖4所示,活化劑對TCH的吸附性能隨著焙燒溫度的提高而逐漸減弱;300℃系列活化劑對TCH的吸附性最強,高達55.9%;600~800℃系列活化劑對TCH的吸附效率區別不大,均低于4.0%.因此,PDS/ CoFe2O4體系中液相TCH濃度的降低,一方面是由于活化劑顆粒的吸附作用使得TCH從液相轉移至固體活化劑表面,另一方面是由于活化劑表面金屬離子活化過硫酸鹽產生強氧化性硫酸根自由基導致TCH被氧化去除[4,28,30-32](式1);其中,后者對TCH去除的貢獻程度被用來評價活化劑顆粒對PDS的活化性能.

式中:M代表金屬元素.
如表1所示,以相同反應時間內TCH整體去除率與吸附率的差值(D(去除-吸附))為指標來評估活化性能,則600℃焙燒溫度下制備的活化劑顆粒具有較高的活性,700℃僅次之,其次是800,500,400, 300℃.

此外,為了考察CoFe2O4系列活化劑在反應體系中的穩定性,本文對PDS/CoFe2O4體系中活化劑金屬離子溶出情況進行研究,結果如圖3b所示.在相同實驗條件下,添加相同濃度(1g/L)活化劑顆粒,在活化過硫酸鹽體系下歷經4h反應后,300℃活化劑中金屬離子溶出量最多,其中鐵離子和鈷離子濃度分別為2.09和4.02mg/L.由于溶液中過渡金屬離子對過硫酸鹽有顯著的活化作用[1,5,33-34],過多金屬離子的溶出會加重PDS/CoFe2O4體系中均相反應的貢獻,暴露均相體系的弊端.300℃活化劑活化過硫酸鹽體系中,反應前30min內液相中TCH濃度的迅速降低,除了活化劑的吸附作用外,活化劑中溶出金屬離子活化過硫酸鹽導致的均相反應同樣起到重要的促進作用.焙燒溫度增至600℃時制備的活化劑,在活化過硫酸鹽體系下歷經4h反應后其溶出的金屬離子量明顯降低,其中鐵離子和鈷離子濃度分別為0.27和0.26mg/L,合計占固體活化劑總質量的0.053%.

圖4 不同焙燒溫度下制備的活化劑樣品對TCH的吸附

表1 不同活化劑樣品在4h反應時間內對TCH的吸附情況(僅活化劑體系)和去除情況(PDS/活化劑體系)
綜上所述,為了減弱均相反應的貢獻和活化劑的穩定性考慮,并結合其對PDS的活化性能,600℃是采用溶膠-凝膠法制備CoFe2O4活化劑最適宜的焙燒溫度.
2.2.1 官能團分析(FT-IR)和元素成分分析 圖5顯示了活化劑前驅物(焙燒前)和CoFe2O4活化劑(焙燒后)的FT-IR圖譜.前驅物圖譜中比較明顯的吸收峰出現在1617和1437cm-1處,分別對應前驅物檸檬酸鹽中COO-的非對稱和對稱伸縮振動[9,35].另外,前驅物中硝酸鹽成分的NO3-常常出現在FT-IR圖譜的1430~1340cm-1峰位置處[9,36],在圖中也有所體現.活化劑圖譜中577cm-1處有一明顯的吸收峰,對應的是尖晶石型FeO6結構的四面體位置金屬內在伸縮振動[36],說明CoFe2O4的形成.CoFe2O4活化劑圖譜中1617和1437cm-1吸收峰的消失,表明在600℃焙燒溫度足夠保證活化劑前驅物焙燒過程中有機殘留物的完全去除.

圖5 CoFe2O4活化劑600℃焙燒前和焙燒后樣品的FT-IR圖譜
為了分析活化劑顆粒的元素成分,將定量顆粒樣品完全溶解于熱的濃鹽酸中,測定溶液中Fe和Co含量,分析兩者的物質的量濃度比.結果表明,元素Fe和Co的物質的量濃度比值為1.92,非常接近CoFe2O4成分的理論值,說明制備的固體顆粒中CoFe2O4成分較高.
2.2.2 表面形貌(SEM)和磁性能(H-M磁滯回線)分析 圖6a顯示了600℃焙燒溫度下制備的CoFe2O4活化劑樣品的SEM圖.活化劑樣品表面形貌均一,為球形納米顆粒,伴有輕度團聚現象.活化劑表面的團聚現象可能與活化劑強磁性(圖6b)有關.

由圖6b可知,活化劑樣品具有很好的磁性能,其飽和磁化強度為53.7emu/g,表明活化劑樣品可以通過外加磁場進行回收再利用,還可實現活化劑顆粒的快速固定(如固定式反應床)并避免活化劑的流失,具有十分可觀的應用前景.
控制實驗條件為PDS01g/L,CoFe2O41g/L, TCH050mg/L,20℃,pH07.0;不同體系下TCH的去除情況如圖7所示.向TCH溶液中單獨加入CoFe2O4(僅CoFe2O4體系),4h內TCH去除率約為4.5%,說明活化劑顆粒對TCH具有一定的吸附能力.向TCH溶液中單獨加入PDS(僅PDS體系),4h內溶液中TCH濃度幾乎無降低,說明PDS自身的氧化性(0=2.01V)不足以氧化去除TCH[37].但當TCH反應體系中CoFe2O4和PDS同時存在時,溶液中TCH的去除率達到72.6%,說明CoFe2O4對PDS具有很好的活化性能.
由于CoFe2O4活化劑顆粒在反應過程中有金屬離子的溶出,本文研究了活化劑溶出金屬離子活化PDS的均相反應體系中TCH去除情況,同等條件下將活化劑浸泡于TCH溶液中4h后分離出活化劑,向剩余溶液中投加PDS,實驗反應4h的結果如圖7中“PDS/Co-Fe”曲線所示.TCH的去除率為15.0%,可見溶出金屬離子活化PDS的均相反應對TCH氧化去除的貢獻很少,這也間接證明了CoFe2O4納米顆粒在活化PDS過程中主要以活化劑表面金屬離子活化PDS的非均相反應為主,本質上區別于溶出金屬離子活化PDS的均相反應.

圖7 不同體系下TCH去除情況
控制實驗條件為PDS01g/L,CoFe2O41g/L, TCH050mg/L,20℃;不同初始pH值(pH0)條件下PDS/CoFe2O4體系中TCH的去除情況如圖8所示.隨著pH0的升高,TCH的去除率均逐漸降低.當溶液pH0為4.4時,反應4h后TCH的去除率達到82.0%;當溶液pH0為7.0時,TCH的去除率下降至72.6%;繼續提高溶液pH0至9.0時,TCH的去除率進一步降低至60.0%.SO4?-在堿性條件下會與OH-反應生成?OH自由基[1-2](式2),因此本實驗所制備的CoFe2O4活化PDS體系即使在堿性條件下仍能保持較好的TCH去除效果.堿性條件下TCH去除效果有所下降,一方面是由于?OH自由基的氧化還原電位低于SO4?-自由基[38],另一方面可能是由于?OH半衰期短于SO4?-進而無法完全遷移至TCH并與之發生有效接觸[39].整體來看,PDS/ CoFe2O4體系在較寬pH值范圍內對TCH有很好的去除效果.

圖8 不同初始pH值條件下PDS/CoFe2O4體系中TCH的去除情況
Fig.8 The TCH removal in PDS/CoFe2O4 systems with different initial pH

為了評價CoFe2O4活化劑的穩定性,將CoFe2O4活化劑進行清洗循環使用,重復利用數次后TCH的去除情況,活化劑浸出金屬離子情況和活化劑物相分析如圖9和圖10所示.試驗條件為PDS01g/L, CoFe2O41g/L,TCH050mg/L,20℃.

采用新活化劑投入PDS體系時,反應4h后TCH的去除率為82.0%;活化劑循環利用10次過程中, TCH的去除率浮動較小,平均值為81.0%;活化劑在第10次循環利用過程中,依舊保持較高的TCH去除率(80.1%),這表明CoFe2O4活化劑對過硫酸鹽保持較高且穩定的活化性能.在活化劑重復利用10次過程中,反應4h后從活化劑中溶出的Fe和Co離子濃度平均值分別為0.226和0.222mg/L,溶出金屬離子含量占活化劑的質量百分比約為0.0448%,這極小的溶出率表明所制備的CoFe2O4活化劑具有很好的穩定性,這可能與穩定的CoFe2O4反尖晶石結構有關.圖10顯示了循環數次后活化劑的XRD圖譜和FT-IR圖譜,表明活化劑循環利用10次后依舊保持較好的反尖晶石結構,也驗證了所制備CoFe2O4活化劑的結構穩定性.
活化劑在活化PDS氧化去除TCH的體系中溶出的金屬離子濃度極小,而且重復利用10次后仍有較好的TCH去除效果,說明所制備的CoFe2O4具有穩定的活性,可重復使用.
3.1 采用溶膠-凝膠法成功制備了磁性納米CoFe2O4顆粒.600℃是溶膠-凝膠法制備CoFe2O4活化劑最適宜的焙燒溫度.
3.2 將制備的磁性納米CoFe2O4顆粒應用于活化PDS體系中,控制實驗條件PDS01g/L,CoFe2O41g/L,TCH050mg/L,20℃,pH04.4,反應4h后TCH去除率達到82.0%.pH0對CoFe2O4活化性能有影響,CoFe2O4活化劑在較寬pH值范圍(pH值4.4~9.0)內對PDS保持較好的活性.
3.3 磁性納米CoFe2O4顆粒在活化過硫酸鹽體系中浸出金屬離子較少,占活化劑總重的0.0448%.整個反應過程以活化劑表面金屬離子活化過硫酸鹽的非均相反應為主,區別于活化劑浸出金屬離子活化過硫酸鹽的均相反應.
3.4 磁性納米CoFe2O4活化劑重復利用10次后,依舊保持較高的活性和較高的結構穩定性,可以重復利用.
[1] Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1):55-91.
[2] Matzek L W, Carter K E. Activated persulfate for organic chemical degradation: A review [J]. Chemosphere, 2016,151:178-188.
[3] Liu J L, Zhong S, Song Y P, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation [J]. Journal of Electroanalytical Chemistry, 2018,809:74-79.
[4] Wang J, Wang S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018,334:1502-1517.
[5] Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion [J]. Chemosphere, 2004,55(9):1225-1233.
[6] 徐源洲,張力浩,方 成,等.優化SO4-.高級氧化技術修復PAHs復合污染土壤 [J]. 中國環境科學, 2020,40(3):1183-1190. Xu Y Z, Zhang L H, Fang C, et al. Optimization of sulfate radical advanced oxidation technology on PAHs remediation in contaminated sites [J]. China Environmental Science, 2020,40(3):1183-1190.
[7] Yan D, Lo I. Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate [J]. Environmental Pollution, 2013,178: 15-22.
[8] 劉佳露,盧 偉,張鳳君,等.活化過硫酸鹽氧化地下水中苯酚的動力學研究 [J]. 中國環境科學, 2015,35(9):2677-2681. Liu J L, Lu W, Zhang F J, et al. Kinetics study of activated persulfate oxidation of phenol in ground water [J]. China Environmental Science, 2015,35(9):2677-2681.
[9] Ding Y, Zhu L, Wang N, et al. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4as a heterogeneous catalyst of peroxymonosulfate [J]. Applied Catalysis B: Environmental, 2013,129:153-162.
[10] 時鵬輝.非均相Co3O4/GO/PMS體系催化氧化降解染料廢水的研究 [D]. 上海:東華大學, 2013. Shi P H. Study on the degradation of dye wastewater by heterogeneous Co3O4/GO/PMS system [D]. Shanghai: Donghua University, 2013.
[11] Oh S Y, Kim H W, Park J M, et al. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron [J]. Journal of Hazardous Materials, 2009,168(1):346-351.
[12] Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) [J]. Chemosphere, 2002,49(4):413-420.
[13] Nadim F, Huang K C, Dahmani A M. Remediation of soil and ground water contaminated with PAH using heat and Fe(II)-EDTA catalyzed persulfate oxidation [J]. Water, Air, & Soil Pollution: Focus, 2006, 6(2):227-232.
[14] Liu J L, Liu Z H, Zhang F J, et al. Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: Effect of soil composition on oxidant demand in different soil-persulfate systems [J]. Water Science and Technology, 2017,75(8):1794-1803.
[15] Deng J, Shao Y, Gao N, et al. Thermally activated persulfate (TAP) oxidation of antiepileptic drug carbamazepine in water [J]. Chemical Engineering Journal, 2013,228:765-771.
[16] 朱思瑞,高乃云,魯 仙,等.熱激活過硫酸鹽氧化降解水中雙酚A [J]. 中國環境科學, 2017,37(1):188-194. Zhu S R, Gao N Y, Lu X, et al. Degradation of bisphenol A in aqueous solution by thermally activated sulfate oxidation. [J]. China Environmental Science, 2017,37(1):188-194.
[17] 李軼涵,姜 恬,周 旭等.熱活化過硫酸鹽氧化降解水溶液中的抗生素卡巴多司和奧喹多司 [J]. 環境科學學報, 2019,39(11):3821- 3831. Li Y H, Jiang T, Zhou X, et al. Thermally activated persulfate oxidation of antibiotics carbadox and olaquindox in aqueous solution [J]. Acta Scientiae Circumstantiae, 2019,39(11):3821-3831.
[18] Huang Y F, Huang Y H. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process [J]. Journal of Hazardous Materials, 2009,162(3):1211-1216.
[19] Shih Y J, Putra W N, Huang Y H, et al. Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/ persulfate oxidation and sequential adsorption [J]. Chemosphere, 2012,89(10):1262-1266.
[20] Peternel I, Kusic H, Marin V, et al. UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant [J]. Reaction Kinetics, Mechanisms and Catalysis, 2013,108(1):17-39.
[21] Perisic D J, Kovacic M, Kusic H, et al. Comparative analysis of UV-C/H2O2and UV-A/TiO2processes for the degradation of diclofenac in water [J]. Reaction Kinetics, Mechanisms and Catalysis, 2016,118:451-462.
[22] Xinxin D, Leonardo G, Jean-Philippe C, et al. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2and UV/persulfate systems: Kinetics, mechanisms, and comparison [J]. Chemosphere, 2020,253:126655-126665.
[23] 馮 梅,陳煒鳴,潘旭秦,等.紫外輻射H2O2與PMS氧化準好氧礦化垃圾床滲濾液尾水[J]. 中國環境科學, 2019,39(9):3744-3753. Feng M, Chen W M, Pan X Q, et al. Comparative study on UV-H2O2and UV-PMS process oxidation of semi-aerobic aged refuse bioreactor leachate tail water [J]. China Environmental Science, 2019, 39(9):3744-3753.
[24] 張 成,萬金泉,馬邕文,等. pH及絡合劑對亞鐵活化S2O82-氧化去除活性艷藍的影響研究 [J]. 環境科學, 2012,33(3):871-878. Zhang C, Wan J Q, Ma Y W, et al. Influences of pH and complexing agents on degradation of reactive brilliant blue KN-R by ferrous activated persulfate [J]. Environmental Science, 2012,22(3):871-878.
[25] 孫海利.非均相類Fenton催化劑的制備及其降解橙黃Ⅱ性能研究 [D]. 杭州:浙江大學, 2015. Sun H L. Heterogeneous Catalyst of Fenton-like reaction for degradation of Orange II [D]. Hangzhou: Zhejiang University, 2015.
[26] 陳晴空.基于SO4·-的非均相類Fenton-光催化協同氧化體系研究 [D]. 重慶:重慶大學, 2014. Chen Q K. Study on synergistic heterogeneous Fenton-photocatalytic oxidation system based on sulfate radicals [D]. Chongqing: Chongqing University, 2014.
[27] Zhang T, Zhu H, Croué J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4spinel in water: Efficiency, stability, and mechanism [J]. Environmental Science & Technology, 2013,47(6):2784-2791.
[28] Ren Y, Lin L, Ma J, et al. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4(M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water [J]. Applied Catalysis B: Environmental, 2015,165:572-578.
[29] Xu Y, Ai J, Zhang H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process [J]. Journal of Hazardous Materials, 2016,309:87-96.
[30] 侯利瑋.金屬氧化物的制備及其催化氧化降解水中四環素和苯酚的研究 [D]. 武漢:武漢大學, 2013. Hou L W. Metal oxides synthesis and their performance on the catalytic oxidation of tetracycline and phenol [D]. Wuhan: Wuhan University, 2013.
[31] Cai C, Liu J, Zhang Z, et al. Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate [J]. Separation and Purification Technology, 2016,165:42-52.
[32] Leng Y, Guo W, Shi X, et al. Degradation of Rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle [J]. Chemical Engineering Journal, 2014,240:338- 343.
[33] Lars R B, Jens M, Erik G S. Influence of chloride and carbonates on the reactivity of activated persulfate [J]. Chemosphere, 2012,86(11): 1092-1097.
[34] 張金鳳,楊 曦,鄭 偉,等.水體系中Fe(Ⅱ)/S2O82--S2O32-降解敵草隆的研究 [J]. 中國環境科學, 2008,28(7):620-623. Zhang J F, Yang X, Zheng W, et al. Studies on Fe(II)/ S2O82--S2O32-degrading diuron in aqueous system [J]. China Environmental Science, 2008,28(7):620-623.
[35] 回瑞華,關崇新,侯冬巖.羧酸及其鹽紅外光譜特性的研究 [J]. 鞍山師范學院學報, 2001,3(1):95-98. Hui R H, Guan C X, Hou D Y. Study on IR characteristics of carboxylic acid and their salts [J]. Journal of Anshan Teachers College, 2001,3(1):95-98.
[36] Laokul P, Amornkitbamrung V, Seraphin S, et al. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4powders prepared by the Aloe vera extract solution [J]. Current Applied Physics, 2011,11(1):101-108.
[37] Ji Y, Shi Y, Dong W, et al. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution [J]. Chemical Engineering Journal, 2016,298:225-233.
[38] 趙進英.零價鐵/過硫酸鈉體系產生硫酸根自由基氧化降解氯酚的研究 [D]. 大連:大連理工大學, 2010. Zhao J Y. Sulfate radical-based oxidation of chlorophenols using zero-valent iron/sodium peroxydisulfate system [D]. Dalian: Dalian University of Technology, 2010.
[39] 晏井春.含鐵化合物活化過硫酸鹽及其在有機污染物修復中的應用 [D]. 武漢:華中科技大學, 2012.Yan J C. Advanced oxidation technologies based on activated persulfate using iron-contained compounds for organic pollutants remediation [D]. Wuhan: Huazhong University of Science and Technology, 2012.
Preparation and activity evaluation of heterogeneous magnetic nano-CoFe2O4activators.
LIU Jia-lu1*, ZHANG Feng-jun2, PENG Xin-jing3
(1.China Nuclear Power Operation Technology Corporation, LTD., Wuhan 430223, China;2.Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China;3.College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China)., 2021,41(5):2179~2186
The magnetic nanoscale cobalt ferrite (CoFe2O4) solid particles were prepared by the sol-gel method. These samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer. The activity of CoFe2O4particles was evaluated with the removal experiments of tetracycline hydrochloride (TCH) in the activated persulfate oxidation system. The results showed that the particles calcined at 600℃ had the higher activity and lower metal ion leaching rate on the particle surface. The CoFe2O4particles prepared at the optimized temperature had high activity in a wide pH range (4.4~9.0) in activated persulfate oxidation system. The TCH removal efficiency reached 82.0% after 4 hours of reaction with the experimental conditions of PDS01g/L, CoFe2O41g/L, TCH050mg/L, 20℃, pH04.4. These particles still maintained high activity and structural stability after 10 cycles of reuse, and could be easily recycled due to its special magnetic properties.
heterogeneous activation;sulfate radical;magnetic nano-CoFe2O4particles;recycle;tetracycline
X703
A
1000-6923(2021)05-2179-08
劉佳露(1990-),女,河南郟縣人,博士,主要從事污水處理技術及電廠化學防腐技術的研究.發表論文5篇.
2020-09-27
* 責任作者, 工程師, liujialusmile@163.com