王玉芳, 鄭棉海, 王森浩, 毛晉花, 莫江明
氮磷添加對華南地區2種人工林土壤氮磷循環酶活性的影響
王玉芳1,2, 鄭棉海1*, 王森浩1,2, 毛晉花1,2, 莫江明1*
(1. 中國科學院華南植物園, 中國科學院退化生態系統植被恢復與管理重點實驗室, 廣東省應用植物學重點實驗室, 廣州 510650; 2. 中國科學院大學, 北京 100049)
為探究亞熱帶森林土壤中與氮、磷循環相關的土壤酶對長期氮、磷沉降的響應,在我國南方大葉相思()和尾葉桉()人工林施N、P肥8 a,對土壤中磷循環酶[磷酸單脂酶(PME)和磷酸二脂酶(PDE)]和氮循環酶[-1,4-乙酰氨基葡糖苷酶(NAG)和l-亮氨酸氨基肽酶(LAP)]的活性進行測定。結果表明,施50 kg/(hm2·a)氮肥對土壤氮和磷循環酶活性沒有顯著影響,施50 kg/(hm2·a)磷肥和氮磷肥[N、P各50 kg/(hm2·a)]均顯著降低了土壤中PME和PDE活性,而對NAG和LAP活性沒有顯著影響。華南地區亞熱帶人工林的微生物和植物生長可能受磷限制而非氮限制,施P可以緩解P限制,這為人工林的管理與恢復提供依據。
氮沉降;磷添加;亞熱帶森林;土壤酶;磷限制
工農業快速發展進程中,人類通過化石燃料燃燒[1-3]、作物種植和N肥施放[4-5]等向大氣中排放大量的N[6],導致全球N沉降趨勢日益嚴峻。非豆科作物通過根系吸收或豆科植物通過生物固N將土壤或大氣中的N固定到植物體內,富N植物殘體的降解將通過硝化與反硝化過程增加大氣中的活性N[7]。雖然近年來減排措施和經濟轉型使得N沉降量有所下降[8-9],但我國仍然是全球N沉降最嚴重的地區之一[6]。降雨監測表明,我國中部和華南地區總N沉降都大于35 kg/(hm2·a)[10],遠高于全球大部分地區。研究表明,過量N沉降會引起土壤酸化[11]、改變生物體與土壤之間的養分供應關系等[12-1313]。亞熱帶森林土壤常被認為富N缺P[14]。N的輸入可能加劇植物和微生物生長的P限制,而植物的P限制可能進一步抑制植物的生長和生物量的增加。然而目前對這些結論還存在很多爭論,因此,繼續開展N、P添加的響應研究, 對我們了解N沉降下植物的生存、生長有重要作用。
土壤胞外酶由植物和微生物共同產生,作用于凋落物與土壤有機質,有利于植物對有機養分的利用和獲取,對生態系統物質循環和能量流動極為重要。其中,磷酸酶有磷酸單脂酶(phosphomonolipase, PME)和磷酸二脂酶(phosphodiesterase, PDE),可水解土壤有機P中的酯鍵,將磷酸鹽釋放到土壤中,供植物或微生物吸收[15]。-1,4-乙酰氨基葡糖苷酶(-1,4-acetyl- glucosaminidase, NAG)和l-亮氨酸氨基肽酶(l-leucine aminopeptidase, LAP)參與蛋白質、核酸等的水解,將復雜的含N化合物降解為植物可以吸收利用的小分子形式,在N循環中發揮作用[16]。有研究表明,N沉降直接或間接作用于土壤酶,影響凋落物的分解進程與速率,進而影響元素的生物地球化學循環[17-18]。
大葉相思()和尾葉桉()是我國南方應用最為廣泛、種植面積較大的荒山綠化樹種[19-20],在生態系統修復和管理中發揮著不可替代的作用。本研究通過野外施肥控制試驗,探究長期N、P添加下2種人工林土壤中與N、P循環相關酶活性的響應及其與土壤理化性質的關系,為深入理解南亞熱帶森林的生物地球化學循環提供理論依據,為森林修復和管理提供建議。
研究樣地位于廣東省鶴山人工林國家定位研究站(112°50′ E, 22°34′ N),為亞熱帶季風氣候,平均年降水量為1 543 mm,雨季從4月持續到9月。年平均氣溫為22.5℃,最冷月1月平均氣溫為10.9℃, 最熱月7月平均氣溫為28.0℃[21]。大氣N沉降背景值約為(43.1±3.9) kg/(hm2·a)[22]。土壤類型為紅壤土[23]。本研究選取2個典型的南亞熱帶成熟人工林尾葉桉林()和大葉相思林(),人工林所栽樹木樹齡均已超過30 a[24]。
采用野外施肥控制試驗,采用完全隨機區組設計。參照Cleveland等[25]的方法設置樣方和施肥量,人工林相距500 m,隨機布置12個10 m×10 m樣方,樣方周圍設10 m寬的緩沖帶以防相互干擾。設置4個處理:對照(CK,不施肥)、施N肥(+N)、施P肥(+P)、同時施N和P肥(+N+P),N、P施肥量均為50 kg/(hm2·a),每處理均3次重復。試驗從2010年7月開始,每2個月用人工背負式噴霧器噴灑NH4NO3和NaH2PO4溶液(10 L水溶解),對照樣地噴灑等量等體積的去離子水以消除外加水的影響。
2018年8月底在樣方內隨機布點采樣,用直徑4 cm的土鉆隨機鉆取6鉆0~10 cm表層土壤,分別裝入封口袋,4℃下保存帶回實驗室。將土樣充分混合均勻,挑出細根和石粒等雜物,通過2 mm土篩后分為2部分, 一部分樣品暫存-20℃冰箱用于酶活性測定,一部分用于測定土壤養分含量。
土壤全氮(total nitrogen, TN)、全碳(total carbon, TC)含量用總有機碳分析儀(IsoPrime100, IsoPrime)測定,全磷(total phosphorus, TP)含量用硫酸高氯酸消解-鉬銻抗比色法測定。用改良的熒光法[26-27]測定4種土壤酶(PME、PDE、NAG和LAP)的活性, 其中, LAP以7-氨基-4-甲基香豆素(7-amido-4-methyl-cou- marin, MUC)為底物,另3種土壤酶以4-甲基傘形酮(4-methylumbelliferone, MUB)為底物。將100 mL醋酸緩沖液(50 mmol/L, pH=5.0)加入1.00 g鮮土中, 用勻漿機精準混磨1 min后過60目土篩制成勻漿待測液;樣品孔、空白對照孔和底物對照孔分別加入勻漿液與酶底物溶液(200mol/L)、勻漿液與醋酸緩沖液、醋酸緩沖液與酶底物溶液各1 000L, 比例為1∶1;每樣品重復3次。樣品標線孔分別加500L土壤勻漿液和500L標準物溶液(0~100mol/L MUB或MUC)。搖勻后置于20℃下避光培養4 h,2 900×下離心3 min后,在吸收波長為365 nm和發射波長為450 nm下測定熒光值。酶活性計算方法: (1) 計算每個樣品對應酶的MUB或MUC濃度(mol/L)標線,獲得截距b,斜率k和2;(2) 根據樣品熒光1和對照熒光0計算反應體系的酶濃度=(1-0-)/; (3) 酶活性[nmol/(h·gdry soil)]=××/(×)×1000, 式中,是稀釋倍數,是混磨樣品所用的緩沖液體積(L),是培養時間(h),是土壤干質量(g)。
采用單因素方差分析(ANOVA)和Turkey Kramer HSD比較N、P添加處理下人工林土壤酶活性的差異,獨立樣本檢驗用于分析2人工林對照樣方酶活性差異(<0.05)。采用Person相關分析森林土壤酶活性與土壤養分及化學計量比間的相關關系。所有的統計分析過程都通過統計軟件SPSS 20.0完成, 采用Origin 9.0繪圖。
施N對土壤酶活性的影響不顯著(圖1),僅顯著降低了相思林土壤中磷酸二酯酶(PDE)活性,對2人工林表層土壤中的P獲取酶磷酸單脂酶(PME)、N獲取酶-1,4-N-乙酰氨基轉移酶(NAG)和l-亮氨酸氨基肽酶(LAP)活性均沒有顯著影響。
與對照相比,P添加和N、P共同添加顯著降低了土壤中PME、PDE活性,對NAG、LAP活性沒有顯著影響。施P和同時施N、P處理后,大葉相思林土壤中PME酶活性分別下降了55%和26%,PDE酶活性分別下降了80%和34%;尾葉桉林土壤中PME活性分別下降了63%和46%,PDE活性分別下降了72%和71%。

圖1 氮磷添加對人工林土壤酶活性的影響。柱上不同大寫和小寫字母分別表示林型間和施肥處理間的差異顯著(P<0.05)。
由表1可見,施N僅顯著降低了大葉相思林土壤TN,對土壤C、P含量和化學計量比沒有顯著影響;尾葉桉林和大葉相思林施P和施N+P后,土壤全磷(TP)顯著增加,C∶P和N∶P則顯著降低。
土壤酶活性與土壤養分含量與化學計量比間的相關性分析結果表明(表2),土壤PME和PDE活性與土壤C、N、P含量及化學計量比之間存在極顯著相關關系,與C∶P和N∶P間的相關系數最大,為0.4~0.7。土壤NAG和LAP活性與土壤TN和TC間存在極顯著正相關,相關系數為0.3~ 0.6。

表1 N、P添加對人工林土壤養分和化學計量比的影響
同列數據后不同字母表示差異顯著(<0.05)。
Data followed different letters indicate significant differences at 0.05 level.

表2 土壤酶活性與土壤養分含量及化學計量比的相關系數(r)
=18; **:<0.01; *:<0.05.
本研究人工林對照樣方的NAG和LAP活性與其他亞熱帶、熱帶森林[分別為12.9~73.6和2.7~112.3 nmol/(h·gdry soil)]的相近[17,28-29], 但低于多數溫帶森林[44.5~652.4和3.0~560.5 nmol/(h·gdry soil)][28-29]。這或許是因為亞熱帶森林土壤富含N并且相對缺少P,因此微生物可能需要通過大量N素來合成富含N的磷酸酶[30],以水解土壤中的有機態P。PME和PDE活性與其他熱帶森林[分別為230.4~ 1088.6 nmol/(h·gdry soil)]的相近[17,28-29],但高于多數溫帶森林[148.9~1303.6 nmol/(h·gdry soil)][28-29]。這說明亞熱帶森林土壤可利用的P含量相比溫帶森林較低,無法滿足植物和微生物對P的需求。與尾葉桉林相比,相思林土壤的PME和PDE活性高, 而NAG和LAP活性低,資源分配理論[31]認為土壤微生物根據資源的可用性調節酶的生產,相思林土壤初始TN含量及N∶P更高,植物和微生物能產生更多的P獲取酶來獲得相對更匱乏的P資源。這一理論已多次用來解釋類似的胞外酶活性研究[18,32],本研究結果也支持這一理論。酶活性差異可能與林型有關,有研究表明豆科植物根磷酸酶活性高于非豆科植物[33],且這種差異是豆科植物系統發育保留的保守性狀[33-34],與固N能力沒有直接聯系。
有研究表明N沉降對中國森林6種土壤胞外酶活性的影響較小,其中2個為亞熱帶森林土壤中的NAG和LAP[28],這與本研究結果一致。許多研究及meta分析結果[32,35-36]也與本研究一致。本研究中土壤PME和PDE都屬于磷酸酶,有報道土壤磷酸酶活性在施N后出現降低[18,30]、無效應[36]或增加[32,37]等響應,本研究中施N后土壤磷酸酶活性變化不顯著。土壤酶活性可表征生物體的營養限制[38],當土壤富N缺P,且面臨N沉降壓力,植物和微生物則受到P的限制[39],因此,施N可能不會改變生物體的N、P限制,本研究土壤N∶P未發生變化也驗證了這一觀點。2 a施N處理后土壤的銨態N、硝態N、可利用性P及土壤TN含量均未發生變化[24,40],進入生態系統的N迅速被固定, 可能不足以引起植物和微生物酶生產投資的改變, 施N后葉片N含量增加[40]也支持這一觀點。另外,影響酶活性的土壤微生物群落可能未發生變化,有研究表明,土壤微生物MBC、MBN在施N處理1 a后并沒有發生顯著變化[24],土壤C、N含量是微生物生物量的關鍵影響因素[41-42],本研究中土壤C、N含量也沒有發生變化。微生物生長需要特定的pH范圍[43],施N處理6 a土壤pH沒有顯著變化[12]。此外,土壤酶活性與森林類型[18]及酶活性的干濕季動態[36]等很多因素有關,本研究中N、P獲取酶活性在施N后沒有變化可能是這些因素綜合表現的結果。
本研究添加P和N+P后土壤N獲取酶NAG和LAP活性變化不顯著,Taiki等[16]報道馬來西亞熱帶森林土壤N獲取酶與土壤TN、TC含量存在極顯著的正相關關系,且初始N含量相對較高[39],植物和微生物生長不受N限制,這都是N獲取酶活性變化不大的原因。這與本研究結果一致。土壤P獲取酶與土壤TP及與TP相關的化學計量比分別存在極顯著的負、正相關關系,這可能是土壤PME和PDE活性下降的原因。這與其他亞熱帶森林的研究結果[18,36,44]類似,施P緩解了森林P的供應和競爭壓力,植物和微生物減少合成磷酸酶的投資,這符合資源分配理論[31]。同時也符合經濟學理論[45],因為相對直接吸收無機P,通過磷酸酶來獲取P更消耗能量[30]。同時施P通常會增加土壤中的有效P (available phosphorus, AP)含量,根據酶促反應理論,目標產物AP增加可能也會成為限制植物和微生物繼續產生P獲取酶的潛在原因,這種機制也被稱作“最終產物抑制”[18]。土壤P獲取酶活性及土壤N∶P在P添加(+P與N+P)處理下顯著降低,說明施P可以緩解植物和微生物的P限制。而氮沉降會導致生態系統從N限制轉為P限制[13],且會進一步加劇植物的P限制[15],因此施P或許可減輕N沉降對植物的影響,緩解植物和微生物的P限制。
研究表明單獨施P對土壤磷獲取酶活性的抑制作用更強烈,施N、P可緩解單獨施P對土壤酶活性的負效應。土壤磷酸酶活性與土壤AP含量存在顯著負相關關系[46-47],且N、P同時添加的土壤AP含量比單獨添加P處理的增加幅度小,土壤AP含量增加可能間接導致了土壤PME和PDE活性的響應差異[11]。其次,同時施N、P和僅施P的土壤pH降低幅度不同[11,48],前者土壤pH值降低幅度不大,符合土壤微生物生長所需特定的酸堿度范圍[43],土壤酸化程度差異或許也是造成磷酸酶活性響應差異的原因。前期養分添加的研究表明,單獨施N對土壤固N酶活性、固N速率和可溶性無機N含量有顯著影響,但單獨施P和施N+P均沒有顯著影響[39-40]。本研究結果類似,說明同時添加N、P的響應可能是施P起主要作用。
本研究的2個亞熱帶人工林土壤酶對P的添加有強烈響應,但對N添加卻無顯著響應,P添加導致參與獲取P的胞外酶活性顯著降低。人工林微生物和植物生長可能是受P限制而不是N限制,且P輸入會降低N沉降對植物的影響,減輕P限制。因此,我們建議未來我國華南地區人工林的管理可以考慮通過適當的施加P肥以緩解P限制,促進植物生長及生物量增加。
[1] CHEN Y, RANDERSON J T, VAN DER WERF G R, et al. Nitrogen deposition in tropical forests from savanna and deforestation fires [J]. Glob Change Biol, 2010, 16(7): 2024-2038. doi: 10.1111/j.1365-2486. 2009.02156.x.
[2] BOY J, ROLLENBECK R, VALAREZO C, et al. Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador [J]. Glob Biogeochem Cycl, 2008, 22(4): GB4011. doi: 10.1029/2007GB003158.
[3] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459-462. doi: 10.1038/nature 11917.
[4] HERRMANN M, PUST J, POTT R. Leaching of nitrate and ammonium in heathland and forest ecosystems in northwest Germany under the influence of enhanced nitrogen deposition [J]. Plant Soil, 2005, 273(1-2): 129-137. doi: 10.1007/s11104-004-7246-x.
[5] VITOUSEK P M, ABER J D, HOWARTH R W, et al. Human alte- ration of the global nitrogen cycle: Sources and consequences [J]. Ecol Appl, 1997, 7(3): 737-750. doi: 10.1890/1051-0761(1997)007[0737: HAOTGN]2.0.CO;2.
[6] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Trans- formation of the nitrogen cycle: Recent trends, questions, and potential solutions [J]. Science, 2008, 320(5878): 889-892. doi: 10.1126/science. 1136674.
[7] GALLOWAY J N. The global nitrogen cycle: Changes and conse- quences [J]. Environ Pollut, 1998, 102(suppl 1): 15-24. doi: 10.1016/ S0269-7491(98)80010-9.
[8] ENGARDT M, SIMPSON D, SCHWIKOWSKI M, et al. Deposition of sulphur and nitrogen in Europe 1900-2050: Model calculations and comparison to historical observations [J]. Tellus B Chem Phys Metorol, 2017, 69(1): 1328945. doi: 10.1080/16000889.2017.1328945.
[9] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade [J]. Nat Geosci, 2019, 12(6): 424-429. doi: 10.1038/s41561-019-0352-4.
[10] ZHU J X, HE N P, WANG Q F, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems [J]. Sci Total Environ, 2015, 511: 777- 785. doi: 10.1016/j.scitotenv.2014.12.038.
[11] MAO Q G, LU X K, ZHOU K J, et al. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest [J]. Geoderma, 2017, 285: 57-63. doi: 10.1016/j.geoderma.2016. 09.017.
[12] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to long- term high nitrogen deposition in an N-rich tropical forest [J]. Proc Natl Acad Sci USA, 2018, 115(20): 5187-5192. doi: 10.1073/pnas.1720 777115.
[13] LU X K, MO J M, ZHANG W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview [J]. J Trop Subtrop Bot, 2019, 27(5): 500-522. doi: 10.11926/jtsb.4113.魯顯楷, 莫江明, 張煒, 等. 模擬大氣氮沉降對中國森林生態系統影響的研究進展 [J]. 熱帶亞熱帶植物學報, 2019, 27(5): 500-522. doi: 10.11926/jtsb.4113.
[14] VITOUSEK P M, SANFORD JR R L. Nutrient cycling in moist tropical forest [J]. Ann Rev Ecol Syst, 1986, 17(1): 137-167. doi: 10. 1146/annurev.es.17.110186.001033.
[15] PANT H K, WARMAN P R. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases [J]. Biol Fertil Soils, 2000, 30(4): 306-311. doi: 10.1007/s003740050008.
[16] MORI T, IMAI N, YOKOYAMA D, et al. Effects of nitrogen and phosphorus fertilization on the ratio of activities of carbon-acquiring to nitrogen-acquiring enzymes in a primary lowland tropical rainforest in Borneo, Malaysia [J]. Soil Sci Plant Nutr, 2018, 64(5): 554-557. doi: 10.1080/00380768.2018.1498286.
[17] WANG C, MORI T, MAO Q G, et al. Long-term phosphorus addition downregulates microbial investments on enzyme productions in a mature tropical forest [J]. J Soils Sediments, 2019, 20(2): 921-930. doi: 10.1007/s11368-019-02450-z.
[18] ZHENG M H, HUANG J, CHEN H, et al. Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China [J]. Eur J Soil Biol, 2015, 68: 77-84. doi: 10.1016/j.ejsobi.2015.03.010.
[19] LI P H, WANG Q, REN H. The simulation on carbon stocks and dynamics inplantation ecosystem [J]. J Trop Subtrop Bot, 2009, 17(5): 494-501. doi: 10.3969/j.issn.1005-3395.2009.05.012.李平衡, 王權, 任海. 馬占相思人工林生態系統的碳格局及其動態模擬 [J]. 熱帶亞熱帶植物學報, 2009, 17(5): 494-501. doi: 10.3969/ j.issn.1005-3395.2009.05.012.
[20] WANG W, XU J M, LI G Y, et al. Comprehensive selection on growth, stem form ofclones and resistance to[J]. J Trop Subtrop Bot, 2011, 19(5): 419-424. doi: 10.3969/j. issn.1005-3395.2011.05.005.王偉, 徐建民, 李光友, 等. 尾葉桉無性系生長、干形和抗枝癭姬小蜂綜合選擇 [J]. 熱帶亞熱帶植物學報, 2011, 19(5): 419-424. doi: 10. 3969/j.issn.1005-3395.2011.05.005.
[21] WU J P, LIU Z F, WANG X L, et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in twoplantations in south China [J]. Funct Ecol, 2011, 25(4): 921-931. doi: 10.1111/j.1365-2435.2011.01845.x.
[22] HUANG J, ZHANG W, ZHU X M, et al. Urbanization in China changes the composition and main sources of wet inorganic nitrogen deposition [J]. Environ Sci Pollut Res, 2015, 22(9): 6526-6534. doi: 10.1007/s11356-014-3786-7.
[23] CHEN D M, ZHANG C L, WU J P, et al. Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China [J]. Agric For Meteorol, 2011, 151(9): 1214-1225. doi: 10. 1016/j.agrformet.2011.04.011.
[24] ZHANG W, ZHU X M, LIU L, et al. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species [J]. J Geophys Res Biogeo, 2012, 117(G4): G00N16. doi: 10.1029/2012J G002094.
[25] CLEVELAND C C, TOWNSEND A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmo- sphere [J]. Proc Natl Acad Sci USA, 2006, 103(27): 10316-10321. doi: 10.1073/pnas.0600989103.
[26] WANG C, LU X K, MORI T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest [J]. Soil Biol Biochem, 2018, 121: 103-112. doi: 10.1016/j.soilbio.2018.03.009.
[27] BELL C W, FRICKS B E, ROCCA J D, et al. High-throughput fluoro- metric measurement of potential soil extracellular enzyme activities [J]. J Vis Exp, 2013, 17(81): e50961. doi: 10.3791/50961.
[28] JING X, CHEN X, TANG M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests [J]. Sci Total Environ, 2017, 607-608: 806-815. doi: 10.1016/j.scitotenv. 2017.07.060.
[29] XU Z W, YU G R, ZHANG X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC) [J]. Soil Biol Biochem, 2017, 104: 152-163. doi: 10.1016/j.soilbio.2016.10.020.
[30] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests [J]. Ecology, 2001, 82(4): 946-954. doi: 10.1890/0012-9658(2001)082[0946: EOSNAO]2.0.CO;2.
[31] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs [J]. Soil Biol Biochem, 2005, 37(5): 937-944. doi: 10.1016/j.soilbio.2004.09.014.
[32] XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change [J]. Soil Biol Biochem, 2018, 123: 21-32. doi: 10.1016/j.soilbio.2018.05.001.
[33] GUILBEAULT-MAYERS X, TURNER B L, LALIBERTé E. Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species [J]. Ecology, 2020, 101(8): e03090. doi: 10.1002/ecy.3090.
[34] PNG G K, TURNER B L, ALBORNOZ F E, et al. Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability [J]. J Ecol, 2017, 105(5): 1246-1255. doi: 10.1111/1365-2745.12758.
[35] CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis [J]. Agric Ecosyst Environ, 2018, 252: 126-131. doi: 10.1016/j.agee.2017. 09.032.
[36] TURNER B L, WRIGHT S J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest [J]. Biogeochemistry, 2013, 117(1): 115-130. doi: 10.1007/s10533-013-9848-y.
[37] MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems [J]. New Phytol, 2012, 193(3): 696-704. doi: 10.1111/j.1469-8137. 2011.03967.x.
[38] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biol Biochem, 2013, 58: 216-234. doi: 10.1016/j.soilbio.2012. 11.009.
[39] ZHENG M H, LI D J, LU X, et al. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations [J]. Biogeochemistry, 2016, 131(1): 65-76. doi: 10.1007%2Fs10533-016-0265-x.
[40] ZHENG M H, CHEN H, LI D J, et al. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees [J]. Biol Fertil Soils, 2016, 52(5): 665-674. doi: 10.1007/s00374-016-1109-5.
[41] LIU L, GUNDERSEN P, ZHANG T, et al. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China [J]. Soil Biol Biochem, 2012, 44(1): 31-38. doi: 10.1016/j.soilbio.2011.08.017.
[42] DEMOLING F, OLA N L, B??TH E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils [J]. Soil Biol Biochem, 2008, 40(2): 370-379. doi: 10.1016/j.soilbio.2007.08.019.
[43] ROUSK J, B??TH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME J, 2010, 4(10): 1340-1351. doi: 10.1038/ismej.2010.58.
[44] YOKOYAMA D, IMAI N, KITAYAMA K. Effects of nitrogen and phosphorus fertilization on the activities of four different classes of fine-root and soil phosphatases in Bornean tropical rain forests [J]. Plant Soil, 2017, 416(1/2): 463-476. doi: 10.1007/s11104-017- 3225-x.
[45] BLOOM A J, CHAPIN F S, MOONEY H A. Resource limitation in plants: An economic analogy [J]. Ann Rev Ecol Syst, 1985, 16(1): 363-392. doi: 10.1146/annurev.es.16.110185.002051.
[46] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand [J]. Soil Biol Biochem, 2007, 39(7): 1770-1781. doi: 10. 1016/j.soilbio.2007.02.006.
[47] ZHENG M H, HUANG J, CHEN H, et al. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types [J]. Acta Ecol Sin, 2015, 35(20): 6703-6710. doi: 10.5846/stxb 201405120970.鄭棉海, 黃娟, 陳浩, 等. 氮、磷添加對不同林型土壤磷酸酶活性的影響 [J]. 生態學報, 2015, 35(20): 6703-6710. doi: 10.5846/stxb2014 05120970.
[48] WANG S H, ZHOU K J, MORI T, et al. Effects of phosphorus and nitrogen fertilization on soil arylsulfatase activity and sulfur availabi- lity of two tropical plantations in southern China [J]. For Ecol Manag, 2019, 453: 117613. doi: 10.1016/j.foreco.2019.117613.
Effects of Long-term Nitrogen and Phosphorus Additions on Soil Enzyme Activities Related N and P Cycle in Two Plantations in South China
WANG Yu-fang1,2, ZHENG Mian-hai1*, WANG Sen-hao1,2, MAO Jin-hua1,2, MO Jiang-ming1*
(1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Nitrogen (N) deposition has been increasing during recent decades and may affect supply of soil nutrients and resources acquired by organism. Soil enzyme activity is an important indicator for reflecting the nutrient acquisition of plants and microorganisms. To explore the effects of long-term N and phosphorus (P) additions on activities of N and P cycling enzymes in subtropical forest soil, two plantationsofandin south China were applied N and P fertilizers for 8 years, each with 50 kg/(hm2·a), and then the activities of soil enzymes, including P-cycling enzymes [phosphomonolipase (PME) and phosphodiesterase (PDE)] and N-cycling enzymes [-1,4-acetylglucosaminidase (NAG) and l-leucine aminopeptidase (LAP)] were measured. The results showed that N addition had no significant effect on activities of soil N and P cycling enzymes. P and N+P additions had significant negative effects on activities of PME and PDE, but which had no effect on activities of NAG and LAP. The growth of soil microorganisms and plants of subtropical plantations in south China may be limited by P rather than by N, and P fertilization could alleviate soil P limitation on plants and microorganisms. Therefore, these would provide an important insight for forest management in the future.
N deposition; P addition; Subtropical forest; Soil enzyme; P limitation
10.11926/jtsb.4293
2020-08-17
2020-09-23
國家自然科學基金項目(31770523, 31901164)資助
This work was supported by the National Natural Science Foundation of China (Grant No. 31770523, 31901164).
王玉芳(1992~ ),女,碩士研究生,研究方向為生態系統生態學。E-mail: wyufang@scbg.ac.cn
Corresponding author. E-mail: mojm@scib.ac.cn, zhengmianhai@scbg.ac.cn