杜東升 劉言杰 徐慶陽
摘要: 目前減震結構的附加阻尼比計算都需要先計算出結構的動力反應,并進行復雜的迭代過程,且在計算中一般都僅考慮激勵頻率等于結構基頻的情況。基于非線性黏滯阻尼器,提出了一種不需計算結構動力反應,只根據結構特性、激勵頻率和阻尼器參數直接求解結構附加阻尼比的計算方法。分析了目前常用的幾種附加阻尼比的計算方法,推導出了減震體系在簡諧激勵下,當激勵頻率等于結構基頻時,不需要計算結構動力反應,且不需要迭代過程的附加阻尼比計算公式;研究了不同阻尼指數下激勵頻率對附加阻尼比計算取值的影響,并提出非共振情況下附加阻尼比的簡化計算公式,在此基礎上以反應譜平均周期為地震動的激勵頻率,給出了考慮激勵頻率且不需要計算結構動力反應的附加阻尼比簡化計算方法;通過算例和非線性時程分析結果進行對比,驗證了所提出方法的準確性。
關鍵詞: 消能減震結構; 附加阻尼比; 非線性黏滯阻尼器; 反應譜平均周期
中圖分類號: TU352.11; TU311.3??? 文獻標志碼: A??? 文章編號: 1004-4523(2021)01-0029-09
DOI:10.16385/j.cnki.issn.1004-4523.2021.01.004
引? 言
黏滯阻尼器附加阻尼比的計算是減震結構設計的核心環節,而非線性黏滯阻尼器附加阻尼比的計算由于其在地震作用下的非線性而更為復雜[1?3]。減震結構的有效總阻尼比主要由三部分組成:結構固有阻尼比、阻尼器附加給結構的阻尼比以及結構非線性行為下的滯回阻尼比,其中滯回阻尼比只有在結構出現損傷時才會出現,評估減震結構彈性行為下減震效果的關鍵在于阻尼器附加阻尼比的計算。相關學者對于附加阻尼比的計算方法已經做了大量研究,2008年,Charney等[4]運用振型應變能法、自由振動對數衰減法和復特征值特征向量法分析了單層單跨結構的附加阻尼比;2009年Antonio[5]提出了一種基于動力系統狀態空間方程計算模態阻尼比的方法;2013年,巫振弘等[6]總結了規范方法和減震系數法兩種工程中用于減震結構附加阻尼比計算的方法,并提出適宜于計算機編程計算的自由振動衰減法。這些方法都需要先計算出減震結構的地震響應,且需要多次復雜的迭代計算過程,為了簡化附加阻尼比的計算,一些學者也提出了一些簡化計算方法。2008年,LI Bo等[7]根據改進能力譜和給定的性能準則得到結構有效總阻尼比,進而得到阻尼器的附加阻尼比,該方法經一步計算就能求得結構滿足性能目標所需的附加阻尼比而無需迭代,但是該方法忽略了結構非線性行為對于黏滯阻尼器附加阻尼比的影響;2012年,Diotallevi等[8]為了避免復雜的迭代計算,提出了一種基于阻尼指標直接評估減震結構附加阻尼比的方法,該方法可以根據阻尼指標和結構固有周期直接在圖譜中得到附加阻尼比,但是該圖譜仍需要迭代計算減震結構響應才能獲得;2014年,Lancli等[9]提出一種基于常數設計加速度曲線和常數設計位移曲線直接評估減震結構附加阻尼比方法,該方法雖然避免了計算結構響應,但是沒有考慮地震動激勵頻率對于結構附加阻尼比的影響。
目前計算非線性黏滯阻尼器附加阻尼比的方法通常基于能量原理[10?11],未考慮地震動頻譜特性且需要迭代計算出響應才能進一步求得附加阻尼比,求解過程比較復雜,不便應用于工程實際。
1 通過計算結構響應求解非線性黏滯阻尼器的附加阻尼比
1.1 通過能量比值計算非線性黏滯阻尼器的附加阻尼比
由公式(28)可以得到El?Centro地震波激勵下結構共振時附加阻尼比ζsd,res=12.92%,將該值代入到公式(29)得到考慮El?Centro地震波頻譜特性后的附加阻尼比為13.97%,也可以根據阻尼系數cα,結構自振周期T或El?Centro地震波的峰值加速度
g0,在圖20?21中得到非線性黏滯阻尼器的附加阻尼比。
采用表1中10條地震波作為輸入激勵,運用能量比法式(9)、阻尼指標法式(11)、本文方法式(28)和非線性時程分析法(NMA和“抗規”法)分別計算減震結構共振時的附加阻尼比,將式(28)得到的附加阻尼比代入到公式(29)得到考慮地震動頻譜特性后的附加阻尼比。
表2對比了這6種方法計算得到的附加阻尼比,發現結構共振時的5種方法計算結果較為接近,其中,因為10條地震波的峰值加速度調整為同一個值,所以阻尼指標ε是常數值,進而由阻尼指標法求得的附加阻尼比為一個定值。
考慮地震激勵頻譜特性后,因10條地震波對應的Ωm/ω均大于1,所以公式(29)大于公式(28)的計算結果,與簡諧激勵頻率比大于1時附加阻尼比變化規律一致,如圖23所示。由于地震激勵的頻譜特性對于計算結構附加阻尼比有著不可忽略的影響,所以公式(29)的計算結果理論上更為準確。
4 結? 論
(1)推導出了在共振情況下減震結構不需要計算動力反應的附加阻尼比求解公式,然后分析了不同阻尼指數的阻尼器在考慮激勵頻率影響下,附加阻尼比隨頻率比的變化規律,進而提出了考慮激勵頻率影響的附加阻尼比簡化計算公式。
(2)在共振情況下阻尼器為結構提供的附加阻尼比最小;當激勵頻率小于結構頻率時,隨著激勵頻率減小,阻尼器為結構提供的附加阻尼比以平方關系增加;當激勵頻率大于結構頻率時,隨著激勵頻率增加,阻尼器為結構提供的附加阻尼比以線性關系增加。
(3)以6層剪切型結構為例,將本文方法計算的結果與文獻[13]進行了對比,并與能量比法、阻尼指標法、非線性時程分析的計算結果進行了對比,驗證了本文方法的可行性和準確性。
在已知地震動特性、結構特性和阻尼器參數的情況下,采用本文的方法可以方便地計算減震結構的附加阻尼比,但地震動的頻率采用反應譜平均周期進行計算的方法有待完善。
參考文獻:
[1]??????? Lin Y Y, Chang K C, Chen C Y. Direct displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers[J]. Bulletin of Earthquake Engineering, 2008,(6):535?552.
[2]??????? Enrico T, Laura R, Andrea D A. Probabilistic seismic response assessment of linear systems equipped with nonlinear viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 2015,44(1):101?120.
[3]??????? Patel C C. Dynamic response of adjacent structures coupled by nonlinear viscous damper[J]. Advances in Structural Engineering, 2015: 1091?1102.
[4]??????? Charney Finley A, McNamara Robert J. Comparison of methods for computing equivalent viscous damping ratios of structures with added viscous damping[J]. Journal of Earthquake Engineering, 2008, 134(1): 32?44.
[5]??????? Antonio Occhiuzzi. Additional viscous dampers for civil structures: Analysis of design methods based on effective evaluation of modal damping ratios[J]. Engineering Structures, 2009, 31(5): 1093?1101.
[6]??????? 巫振弘,薛彥濤,王翠坤,等.多遇地震作用下消能減震結構附加阻尼比計算方法[J].建筑結構學報,2013,34(12): 19-25.
WU Zhenhong, XUE Yantao, WANG Cuikun, et al. Calculation method of additional damping ratio of energy dissipation structure under multiple earthquakes[J]. Journal of Building Structures, 2013,34(12): 19?25.
[7]??????? LI Bo, LIANG Xingwen. Seismic design of structure with supplemental viscous dampers based on improved capacity spectrum method[C]. Proceeding of the Tenth International Symposium on Structural Engineering for Yong Expert, 2008: 1230?1236.
[8]??????? Diotallevi P P, Landi L, Dellavalle A. A methodology for the direct assessment of the damping ratio of structures equipped with nonlinear viscous dampers[J]. Journal of Earthquake Engineering, 2012,16(3): 350?373.
[9]??????? Landi L, Lucchi S, Diotallevi P P. A procedure for the direct determination of the required supplemental damping for the seismic retrofit with viscous dampers[J]. Engineering Structures, 2014,71: 137?149.
[10]????? 中華人民共和國住房和城鄉建設部.GB50011-2010, 建筑抗震設計規范[S]. 北京: 中國建筑工業出版社, 2010.
Ministry of Housing and Urban-Rural Developemnt of the People's Republic of China. GB50011-2010, Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010.
[11]????? Chopra A K. Dynamics of Structures: Theory and Applications to Earthquake Engineering[M]. 2nd ed. Upper Saddle River: Prentice-Hall, 2001.
[12]????? Rathje E M, Faraj F, Russel S, et al. Empirical relationships for frequency content parameters of earthquake ground motions[J]. Journal of Earthquake Spectra, 2004, 20:119?144.
[13]????? Takewaki I. Optimal damper placement for minimum transfer functions[J]. Earthquake Engineering & Structural Dynamics, 1997, 26 (11): 1113?1124.
[14]????? 魏? 巍,馮啟民.幾種push-over分析方法對比研究[J]. 地震工程與工程振動, 2002,22(4): 66?73.
WEI Wei, FENG Qimin. Comparative study on several push-over analysis methods[J]. Journal of Earthquake Engineering and Engineering Vibration, 2002,22(4): 66-73.
[15]????? 丁永君,劉勝林,李進軍.黏滯阻尼結構小震附加阻尼比計算方法的對比分析[J].工程抗震與加固改造, 2017,39(1):78-83.
DING Yongjun, LIU Shenglin, LI Jinjun. Comparative analysis of calculation methods for additional damping ratio of small earthquakes with viscous damping structure[J]. Earthquake Resistant Engineering and Retrofitting, 2017,39(1):78-83.
Abstract: At present, it is necessary for the calculation of the supplemental damping ratio of the aseismic structure to calculate the dynamic response of the structure and perform the iterative process. In addition, generally only the case where the excitation frequency is equal to the fundamental frequency of the structure is considered. Based on the nonlinear viscous damper, a calculation method that without calculating the structural dynamic response directly obtains the structural supplemental damping ratio based on structural characteristics, excitation frequency and damper parameters is proposed. Firstly, several frequently used methods of calculating supplemental damping ratio are analyzed. Then, the calculation formula of the supplemental damping ratio for the excitation frequency equals to the fundamental frequency of the structure, and without calculating the structural dynamic response and the iterative process is deduced. By studying on the influence of the excitation frequency on the calculation of the supplemental damping ratio for different damping indexes, a simplified calculation formula for supplemental damping ratio in the case of non-resonance is proposed. On this basis, taking response spectrum average period as the excitation frequency of the ground motion, a simplified calculation method of the supplemental damping ratio considering the excitation frequency and no need to calculate the structural dynamic response is given. Finally, the accuracy of the proposed method is verified by comparing the results of the example with the results of nonlinear time history analyses.
Key words: energy dissipation structure; additional damping ratio; nonlinear viscous damper; response spectrum average period
作者簡介: 杜東升(1977-),男,博士,副教授。 電話:13915955604; E-mail: ddshy@163.com