周干芳

[摘 要]為了狠抓解決問題,發展應用意識,以蘇教版小學數學“解決問題”教學為例,收集數學信息,學會區分有用信息;提出數學問題,發展學生數學眼光;分析數量關系,發展學生邏輯思維;反思解題過程,幫助學生養成習慣。
[關鍵詞]蘇教版教材;解決問題;應用意識
[中圖分類號] G623.5[文獻標識碼] A[文章編號] 1007-9068(2021)17-0080-02
應用意識包括兩層意思,一方面有意識地利用數學的概念、原理和方法解釋生活中的現象,解決問題;另一方面,認識到生活中蘊涵著大量與數量和圖形有關的問題,這些問題可以抽象成數學問題,用數學的方法解決。蘇教版教材中的“解決問題”不僅被安排在平時教學的四大領域中,還單獨在每一冊中安排了一個單元的“解決問題策略”,幫助學生掌握解題的基本步驟和方法。
為了發展學生的應用意識,我從收集數學信息、提出數學問題、分析數量關系和解決數學問題這四個角度展開深入研究和實踐,引導學生帶著數學的眼光看待生活中的問題,學會表達解題過程和總結解題方法。
一、收集數學信息,學會區分有用信息
在信息時代,學生每天都會接觸大量的信息,他們需要帶著一雙慧眼去識別生活中的數學信息,為提出數學問題尋找有效素材。
例如,我在教學蘇教版教材二年級下冊第八單元“數據的收集和整理(一)”時,教材中出示的情境圖是靜態的學生課間活動,我組織學生先把圖中的人進行分類整理,比如可以按老師和學生分成兩類,也可以按參加的活動分成三類。我在課前提前拍攝了全班學生的課間活動照片,讓學生感受到數學信息的生活性和真實性。在課堂教學時,我先引導學生從數學的角度來描述這張照片,比如有4個小朋友在跳繩、有5個小朋友在踢毽子等;再引導他們對照片中的相關事物進行分類整理,此時學生已經具備了一定的收集和整理信息能力;最后我引導他們用自己的方法表示出分類的結果,篩選出有用的數學信息,比如有的學生用一個“√”表示一個人,還有的學生用一個“△”表示一個人。當然,為了讓學生深刻體會到什么是有用的數學信息,我組織學生重新審視自己的分類標準,分析這一分類標準的合理性和不唯一性。
在這個教學過程中,學生經歷了數學信息的收集和分類整理工作,圍繞分類標準篩選有用的數學信息,在比較中體會分類標準的不同導致分類結果的不同。當學生經歷幾次這樣的訓練后,他們就能獨自收集、整理、篩選出有用的數學信息。
二、提出數學問題,發展學生的數學眼光
愛因斯坦提出:“提出問題往往比解決問題更重要,因為解決一個問題也許只是一個數學上的技能,而提出新的問題,要從新的角度去看舊的問題,需要有創造性的想象力?!睂W生可以圍繞已知數學信息提出數學問題,也可以針對已有數學信息提出質疑。
例如,我在教學蘇教版教材二年級上冊第一單元“100以內的加法和減法(三)”一課時,先出示了情境圖和三個已知信息:小紅折了19只千紙鶴,小王折了27只千紙鶴,小明折了26只千紙鶴。我組織學生選擇有用的數學信息提出數學問題,他們提出了很多的數學問題。一步加法問題,如小紅和小王一共折了多少只?小王和小明一共折了多少只?一步減法問題,如小紅比小王少折了多少只?小明比小紅多折了多少只?小王比小明多折了多少只?兩步加法問題,如三人一共折了多少只?兩步加減混合計算問題,如小紅和小王折的總數比小明折的多多少只?
當然,教師也可以引導學生提出問題,比如,為什么三人折的數量不同?他們是在同一時間內折的嗎?在這個教學過程中,教師要為學生提供開放、安全和平等的學習環境,鼓勵學生圍繞已知信息進行想象,敢于提出各種各樣的數學問題,再選擇部分問題進行解答。
三、分析數量關系,發展學生的邏輯思維
在解決數學問題時,分析數量關系是成功解決問題的重要環節。在學生讀題和理解題意后,教師要引導學生建立已知條件之間的聯系、已知條件和問題之間的聯系,尋找問題的突破口,從而解決數學問題。
例如,我在教學蘇教版教材六年級上冊第四單元“解決問題的策略”一課時,先出示了一道題目:小明把960毫升果汁倒入6個小杯和2個大杯,正好都倒滿,已知小杯的容量是大杯的[13],小杯和大杯的容量各是多少毫升?我先組織學生讀題,并獨立解題。接著引導他們思考怎樣理解題目中數量之間的關系,嘗試把抽象的文字轉化為文字表達式。學生根據條件“小明把960毫升果汁倒入6個小杯和2個大杯”寫出“6個小杯的容量+2個大杯的容量=960毫升”,把條件“小杯的容量是大杯的[13]”轉化為“大杯的容量是小杯的3倍”。隨著思考的深入,有的學生嘗試用假設法,假設把果汁全部倒入小杯,1個大杯可以看作3個小杯,6個小杯和2個大杯就可以看作6個小杯和6個小杯,也就是12個小杯,所以1個小杯的容量是960÷12=80(毫升),1個大杯的容量是80×3=240(毫升)。也有的學生借助線段圖,發現了總量960毫升與小杯容量之間的關系,找到了要解決的中間問題,快速地寫出了算式。還有的學生想到用方程來解決,把1個小杯的容量設為x毫升,再根據兩個條件列出方程并解方程。
在這個教學過程中,學生把抽象的文字轉化為直觀的線段圖,直接寫出算式或者列出方程,不僅發展了邏輯思維,還連通了算式方法和代數方法。
四、反思解題過程,幫助學生養成習慣
學生在分析數量關系和列式計算后,還需要反思解題過程,一方面是檢驗結果是否正確,另一方面是總結和提煉解題方法,為以后解決同類題目積累經驗。
例如,我在教學蘇教版教材四年級下冊第五單元“解決問題的策略”一課時,出示了題目:小寧和小春共有72枚郵票,小春比小寧多12枚,兩人各有郵票多少枚?學生根據題意畫線段圖,算出小春有郵票30+12=42(枚),小寧有郵票(72-12)÷2=30(枚)。接著,我組織全班學生用“把得數代入原題”的方法對算式和結果進行檢驗,先檢驗兩人的郵票總數是不是72枚,再檢驗小春的郵票是不是比小寧的多12枚,符合這兩個條件才算真正做對。最后,我帶著全班學生回顧了解決問題的全過程。
在這個教學過程中,學生經歷了解題的所有步驟,最后對解題過程的反思會讓他們有感而發,或修正自己的錯誤想法,或完善自己的解題方法,或補充多種解題方法,為以后解決問題積累了豐富的經驗,進一步掌握和鞏固了解決問題的策略。
總之,在“解決問題”課堂上,教師要關注學生的知識經驗和體驗活動,讓他們在充分理解題意的基礎上展開深入的思考和交流,主動地發現各種解題策略和方法,提高解題能力,發展應用意識。
(責編 黃 露)