999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Martingale Transforms on Variable Exponents Martingale Hardy-Lorentz Spaces

2021-06-30 00:07:48ZHANGChuanzhou張傳洲JIAOFan焦樊ZHANGXueying張學英
應用數學 2021年3期

ZHANG Chuanzhou(張傳洲),JIAO Fan(焦樊),ZHANG Xueying(張學英)

(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)

Abstract:In this paper,we research martingale Hardy-Lorentz spaces with variable exponents.Using the technique of Burkholder’s martingale transforms,the interchanging relations between two martingale Hardy-Lorentz spaces with variable exponents and BMO spaces with variable exponents are characterized,respectively.

Key words:Martingale transform;Hardy-Lorentz space;BMO space;Variable exponent

1.Introduction

The motivation in this paper comes from the classical results of CHAO and LONG[1-2],as well as the similar results of Weisz[3-4].The concept of martingale transforms was first introduced by Burkholder[5].It is shown that the martingale transforms are especially useful to study the relations between the predictable Hardy spaces of martingales,such as,which is associated with the conditional quadratic variation of martingales.

Lorentz spaces which were first introduced by Lorentz in 1951 have attracted more and more attention.Recently,the study of the martingale properties of Hardy-Lorentz spaces has become one of the hot topics and many important results have been obtained.FAN et al.[6]discussed Hardy-Lorentz spaces’basic properties,embedding relations and interpolation spaces.JIAO et al.[7]studied the atomic decompositions of Hardy-Lorentz spaces.In[8-9],the dual spaces of Hardy-Lorentz spaces are identified for real-valued and vector-valued martingales,respectively.HE[10]discussed the martingale transforms between Hardy-Lorentz spaces.

It’s well known that variable exponents Lebesgue spaces have been got more and more attention in modern analysis and functional space theory.Diening[11]and Cruz-Uribe[12]proved the boundedness of Hardy-Littlewood maximal operator on variable exponents Lebesgue function spacesLp(·)(Rn)under the conditions that the exponentp(·)satisfies so called log-Hlder continuity and decay restriction.

The situation of martingale spaces is different from function spaces.For example,the good-λinequality method used in classical martingale theory can not be used in variable exponent case.Aoyama[13]proved some inequalities under the condition that the exponentp(·)isF0-measurable.Nakai and Sadasue[14]pointed out that theF0-measurability is not necessary for the boundedness of Doob’s maximal operator,and proved that the boundedness holds when everyσ-algebra is generated by countable atoms.

The main purpose of this paper is to study martingale transforms on variable exponents martingale Hardy-Lorentz spaces.

2.Preliminaries and Notations

Letp(·):Ω→(0,∞)be anF-measurable function.We define

Moreover,whenp(·)≥1,we also define the conjugate functionp′(·)by=1.LetP(Ω)denote the collection of allF-measurable functionsp(·):Ω→(0,∞)such that 0<p-≤p+<∞.

The Lebesgue space with variable exponentp(·)denoted byLp(·)is defined as the set of allF-measurable functionsfsatisfying

where

For anyf∈Lp(·),we haveρ(f)≤1 if and only if‖f‖p(·)≤1.

We present some basic properties here:

1)‖f‖p(·)≥0,‖f‖p(·)=0?f≡0;

2)‖cf‖p(·)=|c|·‖f‖p(·)forc∈C;

3)For 0<b≤min{p-,1},we have

Letp(·)∈P(Ω)and 0<q≤∞.ThenLp(·),q(Ω)is the collection of all measurable functionsfsuch that

According to Theorem 3.1 in[15],the spacesLp(·),qare quasi-Banach spaces.Moreover,it is similar to the classical case that the equations above can be discretized:

and

Let(Ω,F,P)be a complete probability space,andFnbe a nondecreasing sequence of sub-σ-algebra ofFsuch thatwhereFnis generated by countably many atoms.The conditional expectation operators relative toFnare denoted byEn.

We point out that,our results heavily rely on the following condition:There exists an absolute constantKp(·)≥1 depending only onp(·)such that

whereA(Fn)denotes the family of all atoms inFnfor eachn∈N.

For a complex valued martingalef=(fn)n≥0relative to(Ω,F,P;(Fn)n≥0),denotedfi=fi-fi-1(with conventiondf-1=0,F-1={Ω,?})and

Thus the variable exponents martingale Hardy-Lorentz spaceis defined by

Definition 2.1Define the following classes of processesv=(vn)n≥-1adapted to(Fn)n≥-1by

whereM(v)=supn≥-1|vn|.The martingale transform operatorTvfor given martingalefandv∈Vp(·),qis defined byTv(f)=(Tv(fn))n≥0,where

Leth(λ)=‖χ{|f|>λ}‖p(·),f*(t)=inf{λ>0:h(λ)≤t},dt.

Definition 2.2A bilinear operaorTis a convolution operaor if and only if forh=T(f,g),

As the proof of Theorem 2.6 in[16]we also have

Theorem 2.1For allf∈Lp2(·),q2,g∈Lp(·),q,0<p+0<q,q2≤∞,with

3.Boundedness of Martingale Transform Operators

In this section,we investigate the boundedness of martingale transform operators on spacesBMO2(α(·)),respectively.

Definition 3.1Letα(·)+1∈P(Ω)be a variable exponent and 1<q<∞.DefineBMOq(α(·))as the space of all functionsf∈Lqfor which

is finite.Forq=1,we defineBMO1(α(·))with the norm

Definition 3.2Let 1≤r<∞,0<q≤∞andα(·)+1∈P(Ω).The generalized martingale spaceBMO2,q(α(·))is defined by

where

and the supremum is taken over all atoms{Ik,j,i}k∈Z,j∈N,isuch thatIk,j,iare disjoint ifkis fixed,Ik,j,ibelongs toFjifk,jare fixed,and

The following lemmas can be seen in[17].

Lemma 3.1Letp(·)∈P(Ω)satisfy the condition(2.4),0<p+≤1 and 0<q≤1.Then

Lemma 3.2Letp(·)∈P(Ω)satisfy the condition(2.4),0<p+<2 and 1<q<∞.Then

Theorem 3.1 Letp(·),p2(·)∈P(Ω)satisfy the condition(2.4),0<q,q2<∞,v∈Vp(·),qwithandThenTvis of typewith‖Tv‖≤c‖v‖Vp(·),q.

ProofUsing the pointwise estimation

This means thatTvis of typewith‖Tv‖≤c‖M(v)‖p(·),q=c‖v‖Vp(·),q.

Theorem 3.2Letp(·)∈P(Ω)satisfy the condition(2.4),1<q<∞,α(·)<andv∈Vp(·),q.ThenTvis of type(BMO2(α(·)),whereβ(·)=.

ProofSetp1(·)==1.We can choose 1<p2(·)<2 such thatIt is well known thatTvis a self-adjoint operator on Hilbert spaceL2and E(fTv(φ))=E(φTv(f))for anyφandfinL2(see[2]).Since 1<p2(·)<2 andL2is dense in(see Remark 3.8 in[17]),we have

Consequently,for anyφ∈BMO2(α(·)),f∈(1<p2(·)<2),by Lemma 3.1 and Theorem 3.1 we can see

This means thatTvis of type(BMO2(α(·)),with‖Tv‖≤c‖v‖Vp(·),q.

4.Relations Between and

Suppose thatA0andA1are quasi-normed spaces,embedded continuously into a topological vector space.The interpolation spaces betweenA0andA1are defined by means of the socalledK-functionalK(t,f;A0,A1).Iff∈A0+A1,setK(t,f;A0,A1)=inff=f0+f1{‖f0‖A0+t‖f1‖A1}.The infimum is taken over all possible decompositions withf=f0+f1,fi∈Ai,i=0,1.The interpolation space(A0,A1)θ,qis defined as the space of all functionsf∈A0+A1such that

Lemma 4.1[17]Letp(·)∈P(Ω),0<q≤∞,0<θ<1 andThen

Then,for anyf∈we have the following decomposition

Theorem 4.1Letp1(·),p2(·)∈P(Ω),0<p1(·)<p2(·)<∞and 0<q<∞.Suppose thatone of its martingale transformg=Tv-1(f)={gn}n≥0withwhere:=min{E(sj+1(f0)-β|Fj),1}for anyj≥-1,f0is given by(4.2)andThenand.

ProofFrom the definition ofit is easy to see that the proces sv-1=is adapted to{Fj}j≥1and1 for everyj≥1.Theng={gn}n≥0is a martingale transform off={fn}n≥0with the multiplier sequencev-1=1.

Moreover,from(4.2)and the decomposition off,the martingaleghas the corresponding decompositiong=g0+g1,such that

Then

This proves that

Consequently,we have

Thus we have

So

Then

Thus we complete the proof of Theorem 4.1.

Similarly,we have the following theorem and we omit the proof of it.

Theorem 4.2Letp1(·),p2(·)∈P(Ω),0<p1(·)<p2(·)<∞and 0<q1<q2<∞.Suppose thatone of its martingale transformg=Tv-1(f)={gn}n≥0with

5.Relations Between and BMO2

Theorem 5.1Let 1<p(·)≤2,0<q<∞.Then for anythere exist a martingaleg∈BMO2with‖g‖BMO2≤1 andv∈Vp(·),qwithsuch thatf=Tv(g).Conversely,for anyv∈Vp(·),qandg∈BMO2,the martingalef=Tvgis inand.

ProofThe converse assertion follows from Theorem 3.2 immediately.For everyj≥-1,takevj=supm≤jE(s(f)|Fm)and define

Then,it is clear thatf=Tvgand{E(s(f)|Fn)}n≥0is a martingale.Denoting its maximal function byM(s(f))=supn<∞E(s(f)|Fn),we have

Applying Doob’s inequality for variable exponent martingale spaces and interpolation theorem,we have

This impliesv∈Vp(·),q.By Jensen’s inequality,we get

Hence,forN>n≥0,we have

Therefore

Hence,we obtain thatg∈BMO2and‖g‖BMO2≤1.

主站蜘蛛池模板: 成人精品免费视频| 日韩无码黄色网站| 黄色a一级视频| 日本人真淫视频一区二区三区| 婷婷丁香在线观看| 欧美视频免费一区二区三区| 国产chinese男男gay视频网| 无码日韩精品91超碰| 热re99久久精品国99热| 性69交片免费看| 99精品免费在线| 国产美女丝袜高潮| 无码区日韩专区免费系列| 一级毛片在线播放免费| 国产精品无码久久久久久| 亚洲精品视频免费| 国产在线观看高清不卡| 国产一区二区三区视频| 一级毛片无毒不卡直接观看| 99国产在线视频| 亚洲欧美日韩天堂| 中文字幕欧美日韩| 激情综合五月网| 2020国产精品视频| 国产精品人人做人人爽人人添| 婷五月综合| 在线观看国产精品第一区免费| 亚洲福利一区二区三区| 人人艹人人爽| 国产国产人在线成免费视频狼人色| 伊人国产无码高清视频| 91偷拍一区| 成人年鲁鲁在线观看视频| 波多野结衣一级毛片| 国产福利小视频高清在线观看| 国产导航在线| 免费jjzz在在线播放国产| 亚洲综合久久成人AV| 日韩国产一区二区三区无码| 国产精品夜夜嗨视频免费视频| 国产视频一二三区| 99热这里只有精品久久免费| 中文无码影院| 91久久精品日日躁夜夜躁欧美| 久久99国产乱子伦精品免| 成人日韩视频| 国产杨幂丝袜av在线播放| 久久国产乱子| 成人韩免费网站| 色婷婷国产精品视频| 精品视频91| 亚洲男人天堂2018| 国产美女无遮挡免费视频网站| 99精品国产自在现线观看| 欧美在线视频a| 欧美激情第一欧美在线| 亚洲三级色| 国产草草影院18成年视频| 免费看的一级毛片| 欧美日韩va| 激情视频综合网| 99一级毛片| 日韩无码黄色| 91精品视频网站| 中文字幕久久亚洲一区| 日本免费福利视频| 农村乱人伦一区二区| 亚洲精品欧美日韩在线| 国产微拍一区二区三区四区| 一本一道波多野结衣av黑人在线| 免费高清自慰一区二区三区| 人禽伦免费交视频网页播放| 精品成人免费自拍视频| 色综合久久无码网| 一本一道波多野结衣一区二区| 国产真实乱子伦精品视手机观看| av色爱 天堂网| 久久特级毛片| 黄色a一级视频| 国产成人免费观看在线视频| 国产国语一级毛片| 久久久亚洲色|