999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Quaternionic-valued wavelet transform and orthogonal decomposition

2021-09-10 06:00:04-,-
廣州大學學報(自然科學版) 2021年2期

-, -

(School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China)

Abstract: In this paper, we study some properties of the quaternionic-valued wavelet transform in one dimension. The wavelet transform gives an isometric operator from the Hardy space (conjugate Hardy space) to L2 In addition, we obtain an orthogonal decomposition of L2 by using the properties for special functions.

Key words: quaternionic-valued function; wavelet transform; special function; orthogonal decomposition

1 Preliminaries

In this section, we first recall fundamental facts of quaternions which can be found in Refs.[9-10]. Let

H={a+bi+cj+dk∶a,b,c,d∈R},

whereij=-ji=k,jk=-kj=i,ki=-ik=jandi2=j2=k2=-1.For anyq∈H, it can be written asq=a+ib+jc+kd=(a+ib)+j(c-id)=u+jv, then its conjugation is

Obviously, |q|2=|u|2+|v|2and (pq)C=qCpCfor ?q1,q2∈H,

wherefsatisfies

Letf(x)=f1(x)+jf2(x),g(x)=g1(x)+jg2(x)∈L2(R,H).The inner product·,·L2(R,H)is defined by

The quaternionic-valued function spaceLP(R,H) andL∞(R,H) is the set off(x)=f1(x)+jf2(x), wherefsatisfies

For anyF(x)=f1(x)+jf2(x)∈L2(R,H), we define the Fourier transform by

(

ξ

)

=

1

(

ξ

)+

j

2

(

ξ

),

ξ

R

,

Now let us introduce natural convolution of quaternionic-valued functions. For anyf,g∈L2(R,H),

(fg)(x)=(f1*g1)(x)-(

We know that it satisfies (fg)from Ref.[8]. By the above definition of quaternion convolution, we can naturally define the wavelet transform onL2(R,H).

Given an admissible waveletφ, the admissible wavelet transform is defined by

whereU={(a,b):a>0,b∈R}

Tφfis the continuous wavelet transform of a square integrable complex valued functionfonR, this definition comes from Ref.[8].

2 Some properties of quaternionic-valued wavelet transform

In Ref.[8], Akila, et al. obtained Parseval’ identity for quaternionic-valued wavelet transform. Iff,g∈L2(R,H),

(1)

If wavelet functionφsatisfies Eq.(1), we sayφis an admissible wavelet.

Theorem 1 Letf,g∈L2(R,H),φ,ψ∈L2(R,H) are admissible wavelets. Then, we have

(1) (Linearity)

[Wφ(μf+γg)](a,b)=μ[Wφf](a,b)+γ[Wφg](a,b),

[Wμφ+γψf](a,b)=[Wφf](a,b)μC+[Wφf](a,b)γC, ?μ,γ∈H.

(2) (Translation)

[Wφf(·-x0)](a,b)=[Wφf](a,b-x0),

[Wσx0φf](a,b)=[Wφf](a,b+ax0), whereσx0φ(x)=φ(x-x0).

(3) (Scaling)

(4) (Parity)

[W](a,b)=[Wφf](a,-b), where(x)=f(-x).

Proof We only give the proof of (3), and other proofs are analogous.

[Tφ1f1(c·)](a,b)=

[TDcφ1f1](a,b)=

Lemma 1[11]Let {aj} be a sequence of positive reals, 0≤θ≤1. Then

ForP=∞,

|(f

‖f1‖2‖φ1‖2+‖f2‖2‖φ2‖2+

‖f1‖2‖φ2‖2+‖f2‖2‖φ1‖2=

(‖f1‖2+‖f2‖2)(‖φ1‖2+‖φ2‖2)≤

2‖f‖L2(R,H)‖φ‖L2(R,H)(by Lemma 1).

By Riesz-Thorin interpolation theorem, we obtain thatWφis of type (2,P),2≤P≤+∞.

In the following content, we define

Thenτφis bounded, andτφWφis the identity onL2(R,H).

|(τφF)(x)|2=

which implies

‖(τφF)(x)‖L2(R,H)=

‖(τφF)^(ξ)‖L2(R,H)≤

So we have

‖τφ‖≤1.

Now forL2(R,H), we can get

ThusτφWφis the identity onL2(R,H).

Proof Let

(QφF)^(a,ξ)=

Clearly,QφF=F=PφF.

This shows

Noticing thatQφF(a,b)=(wwhere

QφF=0=PφF.

SoQφ=Pφ, we complete the proof.

Theorem 5 Forφ,Ψ∈Φand ((ξ))C(ξ) is real function,A′φis orthogonal toA′ψ, if and only if

Proof Forf,g∈L2(R,H), we have

(ξ)((g

Now we need to find an orthonormal basis forL2(0,∞).ForZ+={0,1,2…},ν>-1,m,n∈Z+,

Letφmbe functions onR, whose Fourier transforms are given by

We define

H+(R,H)={f∈L2(R,H)∶supp?[0,∞)},

H-(R,H)={f∈L2(R,H)∶supp?[-∞,0)}.

Obviously,

L2(R,H)=H+(R,H)⊕H-(R,H).

We have

AW=span{φm}m≥0,

Aφm={f

Any real wavelet functionfsatisfies Eq.(1), we have

We need only consider the following functions: Forf∈H+(R,H),

(

a

,

ξ

)=

f

(

ξ

)

g

(

a

,

ξ

)

(2)

whereg(a,ξ) is real-valued, satisfying

(3)

f(ξ) is quaternionic-valued,satisfying

Note that

(4)

Where the first equation is obtained by

(5)

the second is by

(6)

Thus by Eq.(4), we know thatt1(x) is an admissible wavelet, so

whererm∈R.Hence

By Eqs.(5) and (2), we get

So

F(a,ξ)=∑mrmWφmf(a,b)

(7)

We have a similar proof whenf∈H-.In this case, we will write the result directly,

(8)

From Formulas (7)~(8) and Theorem 5, we get

Now we give another way to prove that this orthogonal decomposition is completely decomposed.

主站蜘蛛池模板: 亚洲成人免费在线| 免费观看成人久久网免费观看| 国产a在视频线精品视频下载| 国产本道久久一区二区三区| 精品久久777| 日韩精品无码免费一区二区三区| 久久香蕉国产线看观| 日韩黄色大片免费看| 久久免费精品琪琪| 精品無碼一區在線觀看 | 久久久久亚洲AV成人网站软件| 日本一区中文字幕最新在线| 亚洲无码高清视频在线观看| 国产精品久久久久久久久久98| 亚洲最大福利网站| 精品成人一区二区三区电影 | 国产乱码精品一区二区三区中文| 欧美区一区二区三| 伊人福利视频| 欧美午夜小视频| 国产在线八区| www亚洲天堂| 久久久黄色片| 亚洲色图在线观看| 国产女人喷水视频| 久久黄色一级片| 国产人人乐人人爱| 凹凸国产熟女精品视频| www.日韩三级| 好紧太爽了视频免费无码| 91欧洲国产日韩在线人成| 午夜福利在线观看入口| 一本大道视频精品人妻 | 久久亚洲国产一区二区| 亚洲国产成人超福利久久精品| 91在线无码精品秘九色APP | 亚洲综合网在线观看| 亚洲女同一区二区| 日本亚洲最大的色成网站www| 99激情网| 青青草一区二区免费精品| 亚洲一区二区三区麻豆| 久青草免费在线视频| 精品久久人人爽人人玩人人妻| 九色视频一区| 欧美成人精品一区二区| 全部无卡免费的毛片在线看| 91久久国产综合精品| 欧美日韩一区二区三区四区在线观看 | 91欧美在线| 午夜日b视频| 欧美日韩国产高清一区二区三区| 国产成人免费观看在线视频| 午夜不卡视频| 亚洲午夜国产片在线观看| 国产a在视频线精品视频下载| 免费aa毛片| 2022国产无码在线| 精品国产免费观看一区| 色综合中文| 日韩国产综合精选| 国产精品尤物铁牛tv| 国产成人一区免费观看| 22sihu国产精品视频影视资讯| 亚洲第一成年网| 国产精品午夜福利麻豆| 精品91视频| 天天色天天操综合网| 免费在线a视频| 国产精品久线在线观看| 女人毛片a级大学毛片免费| 高清色本在线www| 日韩第八页| 亚洲综合网在线观看| 在线观看国产精品日本不卡网| 伊人久久影视| 日本高清有码人妻| 国产精品视频导航| 日韩欧美中文在线| 日韩在线视频网站| 成人精品免费视频| 日韩AV无码一区|