楊麗嬪 朱珍珠 雷紅 劉琴
摘 要:對近年來花青素在神經退行性疾病中的研究進展進行綜述,并從抑制氧化應激、緩解神經炎癥、緩解興奮性毒性和抑制蛋白異常聚集等方面對花青素的神經保護作用機制進行探討,為進一步了解和研究花青素類化合物在神經退行性疾病中的預防作用提供科學依據。
關鍵詞:花青素;神經;退行性疾病;神經保護;分子機制
老齡化趨勢導致神經退行性疾病發病率逐年增加。2018年美國公布的阿爾茨海默癥的患病人數為570萬,預計隨著老齡化趨勢的增加,到2050年將達到1 380萬[1]。在中國,一項根據人口老齡化趨勢的模型研究則預測,到2050年中國的阿爾茨海默癥的患病人數將增長到4 250萬,遠超美國[2]。神經退行性疾病除了嚴重影響患者的生活質量外,同時為社會帶來了巨大的醫護壓力和經濟負擔。目前全世界每年用于治療癡呆癥的總成本超過1萬億美元,預計到2030年將達到2萬億美元[3]。盡管如此,到目前為止大多數的神經退行性疾病尚無十分有效的治療方法,因此人們把目光投入到該類疾病的預防研究中。
花青素屬于黃酮類化合物,廣泛存在深色的果蔬和谷物中。花青素具有較強的抗氧化性,同時具有抗衰老、抗炎、抑菌、保護視力等多種生理功能,能降低機體內的氧化應激[4-5]和炎癥[6]水平。花青素可以通過血腦屏障到達大腦組織,對神經具有保護作用[7-9],因此越來越多的科學家對花青素在神經退行性疾病中潛在的預防作用研究產生了興趣。本文對近年來花青素類化合物對神經退行性疾病相關的神經損傷的保護作用研究進行綜述,旨在為深入研究花青素類化合物對神經退行性疾病的預防作用,為明確富含花青素的食物的健康促進作用提供基礎。
1 花青素的結構及來源
花青素是一類廣泛存在于植物中的天然色素。酸性條件下(pH<2.0)花青素主要以黃鹽陽離子的結構穩定存在,隨著pH增加會呈現出假堿、查爾酮、醌式等不同的結構的轉變,顏色也會由紅色轉變成紫色、橙色、無色和藍色等不同的顏色[10]。花青素骨架結構主要有矢車菊色素、天竺葵色素、飛燕草色素、芍藥色素、牽牛花色素、錦葵色素等六種[11]。自然界中花青素很少以游離態存在,通常是以結合單糖或低聚糖形成花色苷的結構存在[12-13]。在所有的花青素中,矢車菊色素的分布最廣[14-16],如黑米、黑豆、黑莓、紫包菜、桑葚中的花青素主要為矢車菊素類。天竺葵色素主要分布在草莓、樹莓等漿果中,而藍莓中則富含飛燕草色素、牽牛花色素和錦葵色素等多種花青素。由于花青素具有較強的抗氧化、抗衰老作用,因此,食用富含花青素的深色的果蔬和谷物常被認為對健康具有促進作用。
2 神經退行性疾病的發病機制
神經退行性疾病是與中樞神經系統緊密相關的疾病,以神經元發生退行性病變為基礎,屬于慢性且不可逆的神經系統疾病,該疾病的發病人群主要為中老年群體[17]。在多種神經退行性疾病中,以阿爾茨海默氏病(AD)和帕金森氏病(PD)為典型代表[18]。目前認為,神經退行性疾病的發病機制主要有四種:(1)神經系統內發生氧化應激反應導致神經細胞產生氧化損傷[19];(2)神經興奮性毒性引起神經元損傷[20];(3)神經系統內炎癥反應引起神經細胞狀態異常[21];(4)神經系統內蛋白質異常積累引起神經疾病的產生[22]。以上主要的四種發病機制相互作用,最終導致大腦和骨髓特定區域內神經元群體死亡,從而產生認知和運動障礙。
3 花青素對神經退行性疾病的保護作用
流行病學研究表明,長期攝入富含花青素等黃酮類化合物的食物能明顯提高記憶能力,改善老年人的認知障礙,還能在一定程度上減緩神經疾病的產生 [23-24]。此外還發現,花青素的高攝入量與PD的低發病率顯著相關[25],減緩與年齡有關的神經變性,抑制神經炎癥,改善認知的作用[26-28]。一般認為,抑制氧化應激和緩解神經炎癥是花青素發揮神經保護作用的兩個關鍵機制。此外,花青素還可能通過緩解興奮性毒性及抑制蛋白異常聚集發揮作用。
3.1 花青素通過抑制氧化應激發揮神經保護作用
氧化損傷是神經退行性疾病中最常見的特征之一,也是神經細胞死亡的主要因素。研究表明,花青素可直接清除細胞內的活性氧(ROS)[29],抑制神經細胞產生氧化應激,同時可通過促進內源性抗氧化劑的產生降低細胞內ROS含量,發揮間接保護作用[30]。此外,花青素也可以通過抑制線粒體內Bax促凋亡蛋白的活化,調節線粒體膜電位等途徑抑制細胞氧化損傷,最終達到減少神經細胞凋亡,在不同的神經退行性疾病中起到保護神經系統的作用[31-34]。AD屬于發病率較高的神經退行性疾病,誘導其產生的原因有多種,其中最主要的是淀粉樣β蛋白(Aβ)聚集假說。即Aβ肽聚集形成寡聚體和纖維后誘導神經元氧化損傷和影響神經元的生存能力,促進AD的發展[35]。研究表明,花青素作為能夠通過血腦屏障的特殊抗氧化劑,可以進入神經細胞內清除ROS,并促進內源性非酶和酶抗氧化劑的產生,降低氧化應激水平,從而抑制Aβ誘導引起的神經細胞的氧化損傷,為神經元細胞提供有效保護[36-39]。PD是另一種常見的神經退行性疾病,導致該疾病產生的重要因素之一也是氧化損傷。Jian Chen等[40]研究表明,矢車菊色素能夠通過抑制由1-甲基-4-苯基吡啶誘導的線粒體氧化應激發揮對人神經母細胞瘤細胞(SH-SY5Y)的保護作用。Mehrdad Roghani等[41]發現,天竺葵色素可緩解6-羥基多巴胺(6-OHDA)誘導小鼠的神經毒性,減輕其氧化應激水平,對其神經元起到保護作用。
3.2 花青素通過緩解神經炎癥發揮神經保護作用
在中樞神經系統中的小膠質細胞屬于免疫細胞,它是引起神經退行性疾病中神經元功能障礙或死亡的關鍵介體 [42-43] 。小膠質細胞受到外界刺激分泌大量促炎介質,這些促炎介質會誘導神經細胞凋亡,引起神經退行性疾病的產生。花青素可以抑制小膠質細胞中促炎介質的產生,避免因炎癥產生的細胞損傷,從而發揮神經保護作用。Francis C. Lau等[44]和Amanda N. Carey等[45]報道了藍莓花青素通過抑制炎癥介質一氧化氮(NO)和TNF-α的產生及誘導型一氧化氮合酶(iNOS)和環氧合酶(COX-2)的表達緩解小鼠小膠質細胞(BV2)的炎癥水平。動物實驗也證明,花青素能夠通過干預炎癥信號通路,緩解小鼠神經炎癥,減少神經元損傷,從而提高小鼠記憶能力。李建光等[46]也發現,黑果小檗內含有的總花色苷能夠顯著改善Aβ25-35誘導引起的AD小鼠的記憶損傷。類似地,Yong-Jian Wang等[47]報道了紫薯花青素可以緩解脂多糖(LPS)誘導小鼠產生的急性炎癥,逆轉小鼠運動行為的損傷,并改善其學習和記憶能力。
Sarinthorn Thummayot等[48]發現,矢車菊蘇葡萄糖苷(C3G)可抑制NF-κB炎癥信號通路的激活,減少iNOS的表達及NO的產生,同時激活抗氧化防御系統,誘導抗氧化酶的產生并增加其活性,同時調節Aβ25-35誘導引起的人神經母細胞瘤細胞(SK-N-SH)的炎癥反應和氧化應激。Muhammad Sohail Khan等[49]報道了黑豆花青素可同時抑制LPS誘導的小鼠腦組織中ROS和IL-1β等炎癥因子的產生,改善小鼠海馬依賴記憶功能。因此,一般認為花青素對中樞神經系統的保護作用是調節神經系統內的氧化應激和抑制炎癥反應的協同作用的結果。
3.3 花青素通過緩解興奮性毒性發揮神經保護作用
興奮性毒性是神經元特有的現象。興奮性刺激會導致神經元內大量鈣離子(Ca2+)流入,鈣穩態失調,線粒體膜去極化,引起線粒體功能障礙和神經細胞死亡[50]。與AD緊密相關的一種神經毒性物質Aβ和肌萎縮側索硬化癥(ALS)中谷氨酸濃度的劇增,都能夠引起鈣穩態失調而產生神經興奮性毒性[51]。而花青素能緩解鈣穩態失調,減小這類神經興奮毒性。Ping-Hsiao Shih等[52]報道了錦葵色素和錦葵色素-3-O-葡萄糖苷可緩解Aβ1-40和Aβ25-35誘導小鼠腦神經瘤細胞(Neuro-2A)產生的鈣穩態失調,抑制ROS的產生,保護細胞抗氧化防御系統。Ji Seon Yang等[53]報道了矢車菊蘇葡萄糖苷可有效抑制谷氨酸誘導引起的大鼠海馬神經元細胞內Ca2+增加和線粒體去極化,減少神經細胞的死亡,發揮神經保護作用。
3.4 花青素通過抑制蛋白異常聚集發揮神經保護作用
蛋白聚集引起神經元死亡是神經退行性疾病發生的重要機理之一。如AD患者大腦中Aβ肽聚集形成的寡聚體和tau蛋白聚集形成的神經纖維纏結 [54-55]。對于第二大神經退行性疾病PD而言,發病機制之一則是由α-突觸核蛋白聚集形成的路易小體 [56-57]。ALS也與突變或氧化的SOD1和TAR-DNA結合蛋白-43(TDP-43)在細胞內形成大的聚集體有關 [58-59] 。Andrea Tarozzi等[60-61]先后報道了C3G在體外抑制Aβ1-42和Aβ25-35的自發聚集,緩解因Aβ聚集而誘導的SH-SY5Y細胞凋亡和壞死。Nan Song等[62]發現,C3G不僅能在分子水平上抑制Aβ25-35的自發聚集,還能有效抑制Aβ25-35與細胞表面的結合。Hyo-Shin KIM等[63]利用分化后具有神經細胞特征的鼠嗜鉻細胞瘤細胞(PC12)研究發現,飛燕草色素能有效抑制Aβ誘導的tau蛋白過度磷酸化。C3G還可以在AD小鼠體內抑制Aβ引起的tau蛋白過度磷酸化[64]。此外,Herbenya Peixoto等[65]利用秀麗隱桿線蟲研究了巴西莓的含花青素提取物的神經保護作用,發現其顯著降低了AM141線蟲株體內polyQ40∶GFP聚集體的含量,該蛋白聚集體與亨廷頓氏病(HD)相關。
以上結果均表明,花青素很有可能通過抑制蛋白聚集發揮神經保護作用,但目前尚不清楚花青素是否還能夠破壞其他蛋白質物種的有毒聚集體形成,如ALS中的SOD1和PD中的α-突觸核蛋白。
4 結論與展望
老齡化趨勢導致神經退行性疾病患者比例不斷增加。而對于神經退行性疾病已經達成一種共識,即防大于治。花青素作為植物源食品中一種天然功能性成分,由于其抗氧化、抗炎等生理功能而受到廣泛關注。大量的細胞和動物實驗研究均表明,花青素對神經的保護作用可能涉及其抗氧化、抗炎及緩解興奮毒性和抑制蛋白異常聚集等機制。但目前對于花青素對神經的保護作用的流行病學研究和臨床數據還不是很充分。此外,由于花青素在生理條件下不穩定,容易發生氧化降解和在腸道菌群作用下的生物轉化,花青素的生物可利用度也一直讓研究者感到困惑[66]。為深入了解花青素對于神經的保護作用及其機制,需要更多的流行病學統計數據和進一步的臨床試驗,同時對花青素在體內的氧化降解及其代謝產物進行深入研究,明確花青素最終進入大腦神經的目標產物及其對神經的保護作用,為闡明花青素在以預防為主的策略中保護神經系統免受疾病危害的作用,以及富含花青素食品的健康促進作用提供科學依據。
參考文獻
[1]Alzheimer’s Association.2018 Alzheimer’s disease facts and figures[J].Alzheimer’s & Dementia,2018,14(3):367-429.
[2]Clay E,Zhou J,Yi Z M,et al. Economic burden for Alzheimer’s disease in China from 2010 to 2050:a modelling study[J].Journal of Market Access & Health Policy,2019,7(1):1667195.
[3]Prince P M,Wimo P A,Guerchet D M,et al. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence,Incidence,Cost and Trends[R].London:Alzheimer’s Disease International (ADI),2015.
[4]Abdel-Aal,El-Sayed M,Hucl,et al. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat[J].Food Chemistry,2018(254):13-19.
[5]Zhuan H. Research progress on antioxidant characteristics of anthocyanin in blueberriy[J].Cereals & Oils,2019,32(3):1-2.
[6]Szymanowska U,Baraniak B. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries[J].Antioxidants,2019(8):299.
[7]Youdim K A,Dobbie M S,Kuhnle G,et al. Interaction between flavonoids and the blood-brain barrier:in vitro studies[J].Journal of Neurochemistry,2003(85):180-192.
[8]Figueira,Inês,Tavares,Lucélia,et al. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols:an in vitro study[J].European Journal of Nutrition,2019(58):113-130.
[9]Fornasaro S,Ziberna L,Gasperotti M,et al. Determination of cyanidin 3-glucoside in rat brain,liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study[J].Scientific Reports,2016(6):22815.
[10]Nuno B,Fernando P. Chemistry and photochemistry of anthocyanins and related compounds:a thermodynamic and kinetic approach[J].Molecules,2016,21(11):1502.
[11]肖旭峰,李猛,伍夢婷. 彩色馬鈴薯花青素研究進展[J].現代園藝,2020,43(1):50-52.
[12]迪娜·吐爾洪,劉新蓮,李建光. 花色苷抗阿爾茲海默癥的研究進展[J].中華中醫藥雜志,2019,34(4):1614-1617.
[13]喬廷廷,郭玲. 花青素來源、結構特性和生理功能的研究進展[J].中成藥,2019,41(2):388-392.
[14]彭祖茂,鄧夢雅,嚴虞虞,等. 植物中花青素含量測定及種類分布研究[J].食品研究與開發,2018,39(17):100-104.
[15]Pascual-Teresa D,Sonia. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins[J].Archives of Biochemistry and Biophysics,2014(559):68-74.
[16]Khoo H E,Azlan A,Tang S T,et al. Anthocyanidins and anthocyanins:colored pigments as food,pharmaceutical ingredients,and the potential health benefits[J].Food & Nutrition Research,2017,61(1):1361779.
[17]李玲瑤,張智媛,范征. 以Nrf2為靶點治療神經退行性疾病的研究進展[J].腦與神經疾病雜志,2020,28(1):48-53.
[18]Uddin M S,Hossain M F,Mamun A A,et al. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration[J].Science of The Total Environment,2020(725):138313.
[19]Cenini G,Lloret A,Cascella R. Oxidative stress and mitochondrial damage in neurodegenerative diseases:from molecular mechanisms to targeted therapies[J].Oxidative Medicine and Cellular Longevity,2020:1-2.
[20]Binvignat O,Olloquequi J. Excitotoxicity as a target against neurodegenerative processes[J].Current Pharmaceutical Design,2020,26(12):1251-1262.
[21]Stephenson J,Nutma E,Paul V D V,et al. Inflammation in CNS neurodegenerative diseases[J].Immunology,2018(154):204-219.
[22]Cabral-Miranda F,Hetz C. ER Stress and neurodegenerative disease:a cause or effect relationship?[J].Current Topics in Microbiology and Immunology,2017(414):131-157.
[23]Spagnuolo C,Moccia S,Russo G L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders[J].European Journal of Medicinal Chemistry,2018(153):105.
[24]Santos N M,Batista P B,Batista ,et al. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins[J].Current Opinion in Food Science,2019(26):71-78.
[25]Gao X,Cassidy A,Schwarzschild M A,et al. Habitual intake of dietary flavonoids and risk of Parkinson disease[J].Neurology,2012,78(15):1138-1145.
[26]Kent K,Charlton K,Roodenrys S,et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia[J].European Journal of Nutrition,2015,56(1):333-341.
[27]Boespflug E L,Eliassen J C,Dudley J A,et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment[J].Nutritional Neuroscience,2018,21(4):297-305.
[28]Mcnamara R K,Kalt W,Shidler M D,et al. Cognitive response to fish oil,blueberry,and combined supplementation in older adults with subjective cognitive impairment[J].Neurobiology of Aging,2018(64):147-156.
[29]Kim S M,Chung M J,Ha T J,et al. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids[J].Life Sciences,2012,90(21-22):874-882.
[30]Cásedas G,González-Burgos E,Smith C,et al. Sour cherry (Prunus cerasus L.)juice protects against hydrogen peroxide-induced neurotoxicity by modulating the antioxidant response[J].Journal of Functional Foods,2018(46):243-249.
[31]Meng L S,Li B,Li D N,et al. Cyanidin-3-O-glucoside attenuates amyloid-beta (1-40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism[J].Journal of Functional Foods,2017(38):474-485.
[32]王舒敏,譚艷,盧豪,等. 矢車菊-3-O-葡萄糖苷對β淀粉樣蛋白25-35致海馬神經細胞損傷的干預研究[J].衛生研究,2018,47(3):73-78.
[33]Wang Y,Fu X T,Li D W,et al. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells[J].Neural Regeneration Research,2016,11(5):795.
[34]Kelsey N,Hulick W,Winter A,et al. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress[J].Nutritional Neuroscience,2011,14(6):249-259.
[35]Badshah H,Kim T H,Kim M O. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro[J].Neurochemistry International,2015(80):51-59.
[36]Liu L,Sheng B,Yan Y,et al. Protective effect of anthocyanin against the oxidative stress in neuroblastoma N2a cells[J].Progress in Biochemistry and Biophysics,2010,37(7):779-785.
[37]Wang Y,Cho N C,Fu X T,et al. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen speciesmediated DNA damage and apoptosis in PC12 cells[J].中國神經再生研究(英文版),2016(5):795-800.
[38]Ramassamy C,Belkacemi A. Innovative anthocyanin/anthocyanidin formulation protects SK-N-SH cells against the amyloid-β peptide-induced toxicity:relevance to Alzheimer’s disease[J].Central Nervous System Agents in Medicinal Chemistry,2016,16(1):37-49.
[39]Ali T,Kim T,Rehman S U,et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress,neurodegeneration,and memory impairment in a mouse model of Alzheimer’s disease[J].Molecular Neurobiology,2018(55):6076-6093.
[40]Jian C,Jian S,Julian J,et al. Cyanidin protects SH-SY5Y human neuroblastoma cells from 1-Methyl-4-Phenylpyridinium-induced neurotoxicity[J].Pharmacology,2018(102):126-132.
[41]Roghani M,Niknam A,Jalali-Nadoushan M R,et al. Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism[J].Brain Research Bulletin,2010,82(5-6):279-283.
[42]Jeong J W,Lee W,Shin S,et al. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways[J].International Journal of Molecular Sciences,2013,14(1):1502-1515.
[43]吳海歌,劉雨晴,姚子昂. 小膠質細胞及相關神經退行性疾病[J].中國細胞生物學學報,2015,37(4):560-564.
[44]Lau F C,Bielinski D F,Joseph J A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia[J].Journal of Neuroscience Research,2007,85(5):1010-1017.
[45]Carey A N,Fisher D R,Rimando A M,et al. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia[J].Journal of Agricultural & Food Chemistry,2013,61(25):5979-5986.
[46]李建光,陽瑩,劉倩蕓,等. 黑果小檗總花色苷對Aβ25-35誘導的AD小鼠及小膠質細胞神經炎性反應模型的影響[J].中華中醫藥雜志,2017(2):424-427.
[47]Wang Y J,Zheng Y L,Lu J,et al. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain[J].Neurochemistry International,2009,56(3):424-430.
[48]Thummayot S,Tocharus C,Jumnongprakhon P,et al. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells[J].Acta Pharmacologica Sinca,2018(39):1439-1452.
[49]Khan M S,Ali T,Kim M W,et al. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex[J].Neurochemistry International,2016(100):1-10.
[50]劉家岐,楚世峰,張大永,等. 鈣離子與帕金森病的研究進展[J].中國藥理學與毒理學雜志,2018,32(9):32-33.
[51]任振宇,于小倩,彭雙清. 興奮性神經毒性中的鈣穩態失調及其在退行性病變中的作用[J].中國藥理學通報,2007,23(3):289-292.
[52]Shih P H,Wu C H,Yeh C T,et al. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells[J].Journal of Agricultural & Food Chemistry,2011,59(5):1683-1689.
[53]Yang J S,Perveen S,Ha T J,et al. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species[J].Brain Research,2015(1606):9-20.
[54]林煉峰,羅煥敏. 基于Aβ與tau蛋白過度磷酸化損傷機制的阿爾茨海默病治療靶點(英文)[J].神經科學通報(英文版),2011,27(1):53-60.
[55]Brier M R,Gordon,Friedrichsen K,et al. Tau and Aβ imaging,CSF measures,and cognition in Alzheimer’s disease[J].Science Translational Medicine,2016,8(338):66.
[56]Musacchio T,Rebenstorff M,Fluri F,et al. Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T α-synuclein Parkinson’s disease rat model[J].Annals of Neurology,2017,81(6):825-836.
[57]牛西遠,吳蕾,丁小靈,等. 血漿及唾液中α-突觸核蛋白作為帕金森病生物學標記物的研究[J].中風與神經疾病雜志,2018,35(3):201-204.
[58]陳健. 基因沉默減少肌萎縮側索硬化中異常蓄積蛋白的研究進展[J].武警醫學,2018,29(12):1177-1180.
[59]Sun J G,Yu-Mi S,Do-Yeon L,et al. Pathological modification of TDP-43 in amyotrophic lateral sclerosis with SOD1 mutations[J].Molecular Neurobiology,2018(56):2007-2021.
[60]Tarozzi A,Merliccoa A,Morroni F,et al. Cyanidin 3-O-glucopyranoside protects and rescues SH-SY5Y cells against amyloid-beta peptide-induced toxicity[J].Neuroreport,2008,19(15):1483-1486.
[61]Tarozzi A,Morroni F,Merlicco A,et al. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25-35)oligomer-induced toxicity[J].Neuroscience Letters,2010,473(2):72-76.
[62]Song N,Zhang L,Chen W,et al. Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APPswe/PS1ΔE9 mouse model[J].Biochimica Et Biophysica Acta Molecular Basis of Disease,2016,1862(9):1786-1800.
[63]Kim H S,Sul D,Lim J Y,et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation[J].Bioscience Biotechnology & Biochemistry,2009,73(7):1685-1689.
[64]Qin L,Zhang J,Qin M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats[J].Neuroscience Letters,2013,534(Complete):285-288.
[65]Peixoto H,Roxo M,Krstin S,et al. Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.)mediates neuroprotective activities in Caenorhabditis elegans[J].Journal of Functional Foods,2016(26):385-393.
[66]Lila M A,Burton-Freeman B,Grace M,et al. Unraveling anthocyanin bioavailability for human health[J].Annual Review of Food Science and Technology,2016,7(1):375-393.
Research Advancements on the Protective Effect of Anthocyanins on Neurodegradative Disease
YANG Li-pin,ZHU Zhen-zhu,LEI Hong,LIU Qin
(College of Food Science and Engineering,Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province,Nanjing 210023,China)
Abstract:Studies have shown that anthocyanins can prevent neurodegenerative diseases and effectively alleviate the progress of neurodegenerative diseases and exert a protective effect on the nervous system. Research progress on neuroprotection of anthocyanins in neurodegenerative diseases was summarized and the neuroprotective mechanisms of anthocyanins were discussed in terms of suppressing the oxidative stress,anti-neuroinflammation,alleviating excitotoxicity and inhibiting abnormal protein aggregation to provide scientific basis for better understanding on the preventive effects of anthocyanin in neurodegenerative diseases.
Keywords:anthocyanins;nerve;neurodegenerative diseases;neuroprotection;molecular mechanism
基金項目:江蘇省高校自然科學研究重大項目(項目編號:16KJA550001)。
作者簡介:楊麗嬪(1995— ),女,碩士研究生,研究方向:食品科學。
通信作者:劉 琴(1968— ),女,博士,教授,研究方向:功能食品。